【目的】设计MobileNet with large convolution Unit(Mobile-LU)模型,解决由于辣椒病害种类复杂和类间差异不明显而造成的病害识别困难、准确率低等问题。【方法】重新构建MobileNetV3的特征提取层,在并行分支单元结构中采用不同尺度...【目的】设计MobileNet with large convolution Unit(Mobile-LU)模型,解决由于辣椒病害种类复杂和类间差异不明显而造成的病害识别困难、准确率低等问题。【方法】重新构建MobileNetV3的特征提取层,在并行分支单元结构中采用不同尺度的分离卷积,增强模型对辣椒病害尺寸差异特征的表达能力;引入Squeeze-and-Excitation(SE)注意力机制,加强模型对病害相关的特征的学习,提高病害识别准确率;同时使用Leaky ReLU激活函数,在负值区域引入小的斜率,避免网络神经元死亡问题;调整输出层节点个数,更好适应辣椒病害分类任务。【结果】Mobile-LU模型的识别准确率达到98.2%,相较于MobilenetV3-small、ResNet34、VGG16、Alexnet、Swin Transformer、MobileVIT等模型分别高出8.9、7.3、4.4、20.4、6.0、8.3个百分点,且Mobile-LU模型在精确率、召回率、特异度以及F1分数等关键性能指标上也均有优势。【结论】Mobile-LU模型对辣椒病害的识别性能更优,能更好满足辣椒病害识别任务。展开更多
文摘【目的】设计MobileNet with large convolution Unit(Mobile-LU)模型,解决由于辣椒病害种类复杂和类间差异不明显而造成的病害识别困难、准确率低等问题。【方法】重新构建MobileNetV3的特征提取层,在并行分支单元结构中采用不同尺度的分离卷积,增强模型对辣椒病害尺寸差异特征的表达能力;引入Squeeze-and-Excitation(SE)注意力机制,加强模型对病害相关的特征的学习,提高病害识别准确率;同时使用Leaky ReLU激活函数,在负值区域引入小的斜率,避免网络神经元死亡问题;调整输出层节点个数,更好适应辣椒病害分类任务。【结果】Mobile-LU模型的识别准确率达到98.2%,相较于MobilenetV3-small、ResNet34、VGG16、Alexnet、Swin Transformer、MobileVIT等模型分别高出8.9、7.3、4.4、20.4、6.0、8.3个百分点,且Mobile-LU模型在精确率、召回率、特异度以及F1分数等关键性能指标上也均有优势。【结论】Mobile-LU模型对辣椒病害的识别性能更优,能更好满足辣椒病害识别任务。