剪切型断裂是岩土工程中常见的破坏模式,了解剪切破坏机理并准确预测剪切型裂纹的萌生、扩展过程对保障工程结构的安全性与稳定性具有重要意义.文章建立了基于比例边界有限元法(scaled boundary finite element methods,SBFEM)和非局部...剪切型断裂是岩土工程中常见的破坏模式,了解剪切破坏机理并准确预测剪切型裂纹的萌生、扩展过程对保障工程结构的安全性与稳定性具有重要意义.文章建立了基于比例边界有限元法(scaled boundary finite element methods,SBFEM)和非局部宏-微观损伤模型的剪切型裂纹动态开裂模拟方法,定义了基于偏应变概念的物质点对的正伸长量,可作为预测剪切型裂纹扩展行为的动态开裂准则,一点的损伤定义为该点影响域范围内连接的物质键损伤的加权平均值,而物质键的损伤则与基于偏应变概念的物质点对的正伸长量相关联,并引入能量退化函数建立结构域几何拓扑损伤与能量损失之间的关系,将拓扑损伤与应力应变联系起来,通过能量退化函数修正了SBFEM的刚度系数矩阵,得到了子域在损伤状态下的刚度矩阵,推导了考虑结构损伤的SBFEM动力控制方程,采用Newmark隐式算法对控制方程进行时间离散.最后,通过3个典型算例验证了建议的模型可较好地模拟剪切型断裂问题,能够很好地捕捉剪切型裂纹的扩展路径,并得到较为准确的载荷-位移曲线.展开更多
基于MATLAB矢量化的物质点法(material point method,MPM)框架,分析车身前防撞梁的碰撞冲击问题。MPM在每一迭代步将物理参数在物质点和背景网格间相互映射,使用MATLAB矢量化框架可以使用户在快速入门的同时保证求解效率,其应力更新采...基于MATLAB矢量化的物质点法(material point method,MPM)框架,分析车身前防撞梁的碰撞冲击问题。MPM在每一迭代步将物理参数在物质点和背景网格间相互映射,使用MATLAB矢量化框架可以使用户在快速入门的同时保证求解效率,其应力更新采用车身结构材料的弹塑性本构模型。前防撞梁碰撞冲击数值算例结果表明,MPM可以保证求解精度,同时矢量化技术可以大幅提高求解效率。展开更多
文摘剪切型断裂是岩土工程中常见的破坏模式,了解剪切破坏机理并准确预测剪切型裂纹的萌生、扩展过程对保障工程结构的安全性与稳定性具有重要意义.文章建立了基于比例边界有限元法(scaled boundary finite element methods,SBFEM)和非局部宏-微观损伤模型的剪切型裂纹动态开裂模拟方法,定义了基于偏应变概念的物质点对的正伸长量,可作为预测剪切型裂纹扩展行为的动态开裂准则,一点的损伤定义为该点影响域范围内连接的物质键损伤的加权平均值,而物质键的损伤则与基于偏应变概念的物质点对的正伸长量相关联,并引入能量退化函数建立结构域几何拓扑损伤与能量损失之间的关系,将拓扑损伤与应力应变联系起来,通过能量退化函数修正了SBFEM的刚度系数矩阵,得到了子域在损伤状态下的刚度矩阵,推导了考虑结构损伤的SBFEM动力控制方程,采用Newmark隐式算法对控制方程进行时间离散.最后,通过3个典型算例验证了建议的模型可较好地模拟剪切型断裂问题,能够很好地捕捉剪切型裂纹的扩展路径,并得到较为准确的载荷-位移曲线.
文摘基于MATLAB矢量化的物质点法(material point method,MPM)框架,分析车身前防撞梁的碰撞冲击问题。MPM在每一迭代步将物理参数在物质点和背景网格间相互映射,使用MATLAB矢量化框架可以使用户在快速入门的同时保证求解效率,其应力更新采用车身结构材料的弹塑性本构模型。前防撞梁碰撞冲击数值算例结果表明,MPM可以保证求解精度,同时矢量化技术可以大幅提高求解效率。