针对现有串联囊式衰减器(囊式衰减器)压力适应范围窄的问题,提出了通过气压控制系统实现囊式衰减器气囊内部气压主动跟随液压系统工作压力变化的方法,使囊式衰减器在不同工作压力时均具有良好压力脉动抑制性能。在建立气动伺服控制系统...针对现有串联囊式衰减器(囊式衰减器)压力适应范围窄的问题,提出了通过气压控制系统实现囊式衰减器气囊内部气压主动跟随液压系统工作压力变化的方法,使囊式衰减器在不同工作压力时均具有良好压力脉动抑制性能。在建立气动伺服控制系统数学模型的基础上,分别采用比例积分微分(proportional integral derivative,PID)及模糊PID控制方法实现了囊式衰减器气囊内部气压主动跟随系统工作压力的变化,分析了系统工作压力的变化频率、振幅、气瓶充气压力等因素对气囊内压力控制性能的影响,在理论上证明了所提出方法的可行性;分别通过声学仿真软件和试验研究了采用与不采用气压主动控制时囊式衰减器对压力脉动的抑制性能,研究结果均表明采用气压主动控制方法时囊式衰减器对液压管道系统压力脉动的衰减幅值更大、压力适应范围更广,进而验证了所提出气压主动控制方法的有效性与可行性。展开更多
文摘针对现有串联囊式衰减器(囊式衰减器)压力适应范围窄的问题,提出了通过气压控制系统实现囊式衰减器气囊内部气压主动跟随液压系统工作压力变化的方法,使囊式衰减器在不同工作压力时均具有良好压力脉动抑制性能。在建立气动伺服控制系统数学模型的基础上,分别采用比例积分微分(proportional integral derivative,PID)及模糊PID控制方法实现了囊式衰减器气囊内部气压主动跟随系统工作压力的变化,分析了系统工作压力的变化频率、振幅、气瓶充气压力等因素对气囊内压力控制性能的影响,在理论上证明了所提出方法的可行性;分别通过声学仿真软件和试验研究了采用与不采用气压主动控制时囊式衰减器对压力脉动的抑制性能,研究结果均表明采用气压主动控制方法时囊式衰减器对液压管道系统压力脉动的衰减幅值更大、压力适应范围更广,进而验证了所提出气压主动控制方法的有效性与可行性。
文摘采用Belov公式计算单元并排式阻性消声器消声量误差较大,为提高计算精度,按以下步骤构建单元并排式消声器消声量计算模型。(1)将消声器划分为角单元、边单元和内部单元等3种基本单元,采用Belov公式计算各基本单元传递损失(Transmission Loss,TL);(2)假设消声器入口端声能均匀分布,根据各基本单元入口端声功率和传递损失计算公式确定其出口端声功率;(3)根据消声器入口端和出口端总声功率得到消声量理论值TLt;(4)将11425 Pa·s/m^(2)作为流阻率基准值,通过有限元仿真得到采用该流阻率多孔吸声材料的消声器消声量仿真值TLs,得到仿真值和理论值的比值K_(1)(即TLs/TLt);(5)通过仿真进一步确定多孔吸声材料流阻率和基准流阻率不同情况下消声器消声量的比值K_(2),拟合获得K_(2)与流阻率σ的关系函数K_(2)(σ);(6)建立单元并排式阻性消声器消声量计算模型TL=TLt·K_(1)·K_(2)(σ)。实测结果表明,根据该模型计算得到的消声器各倍频带传递损失值与实测值绝对误差均小于2 d B,相对误差均小于10%。模型适用于计算采用不同多孔吸声材料、具有不同结构尺寸的单元并排式阻性消声器的消声量。