针对商用低精度惯性测量单元具有高成本、制造工艺复杂、废弃后污染环境、不能生物降解等缺点,提出一种低成本、可生物降解的木制惯性测量单元。该设计包含平衡振子和非平衡振子单元,分别用于测量3轴加速度和3轴角加速度。采用激光诱导...针对商用低精度惯性测量单元具有高成本、制造工艺复杂、废弃后污染环境、不能生物降解等缺点,提出一种低成本、可生物降解的木制惯性测量单元。该设计包含平衡振子和非平衡振子单元,分别用于测量3轴加速度和3轴角加速度。采用激光诱导石墨烯的工艺在木梁上制备应变传感器阵列,并形成多组惠斯顿电桥测量电路。结果表明:加速度方面,X轴灵敏度为0.006 m V/g,Y轴灵敏度为8.695×10^(-4)m V/g,Z轴灵敏度为0.200 m V/g;角加速度方面,X轴灵敏度为0.285 m V/(rad/s^(2)),绕Y轴旋转的灵敏度为0.305 m V/(rad/s^(2)),绕Z轴旋转的灵敏度为0.765 m V/(rad/s^(2))。与有限单元法仿真结果对比,实验测量误差在10%以内,且具有良好的重复测量精度。该惯性测量单元在木制船舶、木制载具、木制家具等方面具有潜在的应用前景。展开更多
长波红外差分干涉仪在低温工况下会因光学元件受到非均匀应力作用产生干涉条纹的畸变,从而降低干涉仪系统性能。本文为解决低温工况干涉条纹弯曲畸变问题,基于长波红外差分干涉仪光机系统进行了干涉条纹畸变影响因素分析,结合光-机-热...长波红外差分干涉仪在低温工况下会因光学元件受到非均匀应力作用产生干涉条纹的畸变,从而降低干涉仪系统性能。本文为解决低温工况干涉条纹弯曲畸变问题,基于长波红外差分干涉仪光机系统进行了干涉条纹畸变影响因素分析,结合光-机-热耦合分析方法,对干涉仪系统低温工作状态进行仿真。随后设计了针对影响条纹畸变的关键元件——光栅元件的低温微应力动态稳定支撑安装结构,结构优化后的光栅表面面形均方根(Root Mean Square,RMS)值为3.89×10^(-2) nm,面形峰谷值(Peak to Valley,PV)值为2.21×10^(-1) nm,分别较优化前初始系统的分析结果减小了5个数量级,系统仿真干涉条纹畸变小于1个探测器像元。全系统低温验证试验表明,优化结构可有效抑制干涉条纹畸变,畸变量小于2个探测器像元,试验与仿真计算结果一致性较好,验证了优化分析方法的有效性。该优化方案对提升反射式光学系统结构低温稳定性,提高系统工作能力有较大意义和价值。展开更多
针对现有仪表读数方法易受光照不均等因素影响,而导致读数误差大的问题,提出一种基于深度学习的全自动指针式仪表读数方法。首先,引入YOLOv7网络提取表盘区域;其次,采用文中提出的VCA-UNet(VGG16Net,improved skip connections and ASPP...针对现有仪表读数方法易受光照不均等因素影响,而导致读数误差大的问题,提出一种基于深度学习的全自动指针式仪表读数方法。首先,引入YOLOv7网络提取表盘区域;其次,采用文中提出的VCA-UNet(VGG16Net,improved skip connections and ASPP based U-Net)网络用于分割刻度线和指针;最后,引入PP-OCRv3网络自动获取仪表量程,并利用角度法确定仪表示数。实验结果表明:VCA-UNet网络的MIoU和MPA值较U-Net网络分别提升18.48%和9.36%,且普遍高于其他经典分割网络,仪表读数的平均相对误差为0.614%,且泛化实验的读数绝对误差相对较小,验证了读数方法的准确性和泛化性。展开更多
文摘针对商用低精度惯性测量单元具有高成本、制造工艺复杂、废弃后污染环境、不能生物降解等缺点,提出一种低成本、可生物降解的木制惯性测量单元。该设计包含平衡振子和非平衡振子单元,分别用于测量3轴加速度和3轴角加速度。采用激光诱导石墨烯的工艺在木梁上制备应变传感器阵列,并形成多组惠斯顿电桥测量电路。结果表明:加速度方面,X轴灵敏度为0.006 m V/g,Y轴灵敏度为8.695×10^(-4)m V/g,Z轴灵敏度为0.200 m V/g;角加速度方面,X轴灵敏度为0.285 m V/(rad/s^(2)),绕Y轴旋转的灵敏度为0.305 m V/(rad/s^(2)),绕Z轴旋转的灵敏度为0.765 m V/(rad/s^(2))。与有限单元法仿真结果对比,实验测量误差在10%以内,且具有良好的重复测量精度。该惯性测量单元在木制船舶、木制载具、木制家具等方面具有潜在的应用前景。
文摘长波红外差分干涉仪在低温工况下会因光学元件受到非均匀应力作用产生干涉条纹的畸变,从而降低干涉仪系统性能。本文为解决低温工况干涉条纹弯曲畸变问题,基于长波红外差分干涉仪光机系统进行了干涉条纹畸变影响因素分析,结合光-机-热耦合分析方法,对干涉仪系统低温工作状态进行仿真。随后设计了针对影响条纹畸变的关键元件——光栅元件的低温微应力动态稳定支撑安装结构,结构优化后的光栅表面面形均方根(Root Mean Square,RMS)值为3.89×10^(-2) nm,面形峰谷值(Peak to Valley,PV)值为2.21×10^(-1) nm,分别较优化前初始系统的分析结果减小了5个数量级,系统仿真干涉条纹畸变小于1个探测器像元。全系统低温验证试验表明,优化结构可有效抑制干涉条纹畸变,畸变量小于2个探测器像元,试验与仿真计算结果一致性较好,验证了优化分析方法的有效性。该优化方案对提升反射式光学系统结构低温稳定性,提高系统工作能力有较大意义和价值。
文摘针对现有仪表读数方法易受光照不均等因素影响,而导致读数误差大的问题,提出一种基于深度学习的全自动指针式仪表读数方法。首先,引入YOLOv7网络提取表盘区域;其次,采用文中提出的VCA-UNet(VGG16Net,improved skip connections and ASPP based U-Net)网络用于分割刻度线和指针;最后,引入PP-OCRv3网络自动获取仪表量程,并利用角度法确定仪表示数。实验结果表明:VCA-UNet网络的MIoU和MPA值较U-Net网络分别提升18.48%和9.36%,且普遍高于其他经典分割网络,仪表读数的平均相对误差为0.614%,且泛化实验的读数绝对误差相对较小,验证了读数方法的准确性和泛化性。