为了提高语音分离的效果,除了利用混合的语音信号,还可以借助视觉信号作为辅助信息。这种融合了视觉与音频信号的多模态建模方式,已被证实可以有效地提高语音分离的性能,为语音分离任务提供了新的可能性。为了更好地捕捉视觉与音频特征...为了提高语音分离的效果,除了利用混合的语音信号,还可以借助视觉信号作为辅助信息。这种融合了视觉与音频信号的多模态建模方式,已被证实可以有效地提高语音分离的性能,为语音分离任务提供了新的可能性。为了更好地捕捉视觉与音频特征中的长期依赖关系,并强化网络对输入上下文信息的理解,本文提出了一种基于一维扩张卷积与Transformer的时域视听融合语音分离模型。将基于频域的传统视听融合语音分离方法应用到时域中,避免了时频变换带来的信息损失和相位重构问题。所提网络架构包含四个模块:一个视觉特征提取网络,用于从视频帧中提取唇部嵌入特征;一个音频编码器,用于将混合语音转换为特征表示;一个多模态分离网络,主要由音频子网络、视频子网络,以及Transformer网络组成,用于利用视觉和音频特征进行语音分离;以及一个音频解码器,用于将分离后的特征还原为干净的语音。本文使用LRS2数据集生成的包含两个说话者混合语音的数据集。实验结果表明,所提出的网络在尺度不变信噪比改进(Scale-Invariant Signal-to-Noise Ratio Improvement,SISNRi)与信号失真比改进(Signal-to-Distortion Ratio Improvement,SDRi)这两种指标上分别达到14.0 dB与14.3 dB,较纯音频分离模型和普适的视听融合分离模型有明显的性能提升。展开更多
本文提出一种利用双解码卷积循环网络(Dual-decoder Convolutional Recurrent Network,DCRN)代替FxLMS(Filtered-x Least Mean Square)算法的有源噪声控制方法,考虑到相位信息在有源噪声控制(Active Noise Control,ANC)中的重要性,DCRN...本文提出一种利用双解码卷积循环网络(Dual-decoder Convolutional Recurrent Network,DCRN)代替FxLMS(Filtered-x Least Mean Square)算法的有源噪声控制方法,考虑到相位信息在有源噪声控制(Active Noise Control,ANC)中的重要性,DCRN网络的输入特征为噪声信号的复数频谱(包括实部谱和虚部谱).网络结构中,采用编码模块从噪声复数频谱中提取特征,利用双解码模块分别估计网络输出的实部谱和虚部谱,采用参数共享机制和组策略以降低训练参数的数量并提高网络的学习能力和泛化能力.特别是针对风噪声,选用新的损失函数以及对训练数据进行正则化处理以提升DCRN的性能.实验结果表明,DCRN方法在仿真环境与有源降噪耳机环境下对一般噪声和风噪声都表现出良好的降噪性能和鲁棒性.展开更多
文摘为了提高语音分离的效果,除了利用混合的语音信号,还可以借助视觉信号作为辅助信息。这种融合了视觉与音频信号的多模态建模方式,已被证实可以有效地提高语音分离的性能,为语音分离任务提供了新的可能性。为了更好地捕捉视觉与音频特征中的长期依赖关系,并强化网络对输入上下文信息的理解,本文提出了一种基于一维扩张卷积与Transformer的时域视听融合语音分离模型。将基于频域的传统视听融合语音分离方法应用到时域中,避免了时频变换带来的信息损失和相位重构问题。所提网络架构包含四个模块:一个视觉特征提取网络,用于从视频帧中提取唇部嵌入特征;一个音频编码器,用于将混合语音转换为特征表示;一个多模态分离网络,主要由音频子网络、视频子网络,以及Transformer网络组成,用于利用视觉和音频特征进行语音分离;以及一个音频解码器,用于将分离后的特征还原为干净的语音。本文使用LRS2数据集生成的包含两个说话者混合语音的数据集。实验结果表明,所提出的网络在尺度不变信噪比改进(Scale-Invariant Signal-to-Noise Ratio Improvement,SISNRi)与信号失真比改进(Signal-to-Distortion Ratio Improvement,SDRi)这两种指标上分别达到14.0 dB与14.3 dB,较纯音频分离模型和普适的视听融合分离模型有明显的性能提升。
文摘本文提出一种利用双解码卷积循环网络(Dual-decoder Convolutional Recurrent Network,DCRN)代替FxLMS(Filtered-x Least Mean Square)算法的有源噪声控制方法,考虑到相位信息在有源噪声控制(Active Noise Control,ANC)中的重要性,DCRN网络的输入特征为噪声信号的复数频谱(包括实部谱和虚部谱).网络结构中,采用编码模块从噪声复数频谱中提取特征,利用双解码模块分别估计网络输出的实部谱和虚部谱,采用参数共享机制和组策略以降低训练参数的数量并提高网络的学习能力和泛化能力.特别是针对风噪声,选用新的损失函数以及对训练数据进行正则化处理以提升DCRN的性能.实验结果表明,DCRN方法在仿真环境与有源降噪耳机环境下对一般噪声和风噪声都表现出良好的降噪性能和鲁棒性.