在6G通信系统中,随着天线规模的增大,菲涅尔区逐步扩展,现有的远场通信假设会引入严重的能量扩散,即角度域不再稀疏.近场通信利用球面波前进行建模,其信道模型与用户到达基站的角度和距离相关,在通信的同时可以估计角度和距离,实现通信...在6G通信系统中,随着天线规模的增大,菲涅尔区逐步扩展,现有的远场通信假设会引入严重的能量扩散,即角度域不再稀疏.近场通信利用球面波前进行建模,其信道模型与用户到达基站的角度和距离相关,在通信的同时可以估计角度和距离,实现通信感知一体化(Integrated Sensing And Communication,ISAC).本文针对近场环境下ISAC问题,提出了基于极坐标的近场模型,通过非均匀网格划分将ISAC转化为稀疏估计问题,进而提出基于稀疏贝叶斯学习模型和消息传递算法的ISAC算法,同时完成活跃用户检测、位置感知和通信.此外,所提算法采用差分调制,在通信和感知中无需利用导频,即可实现盲ISAC,有效提升通信系统的频谱效率.仿真结果表明,相对于均匀区域划分和文献现有方法,本文提出的ISAC算法可获得更高的感知精度和误码率性能.展开更多
文摘在6G通信系统中,随着天线规模的增大,菲涅尔区逐步扩展,现有的远场通信假设会引入严重的能量扩散,即角度域不再稀疏.近场通信利用球面波前进行建模,其信道模型与用户到达基站的角度和距离相关,在通信的同时可以估计角度和距离,实现通信感知一体化(Integrated Sensing And Communication,ISAC).本文针对近场环境下ISAC问题,提出了基于极坐标的近场模型,通过非均匀网格划分将ISAC转化为稀疏估计问题,进而提出基于稀疏贝叶斯学习模型和消息传递算法的ISAC算法,同时完成活跃用户检测、位置感知和通信.此外,所提算法采用差分调制,在通信和感知中无需利用导频,即可实现盲ISAC,有效提升通信系统的频谱效率.仿真结果表明,相对于均匀区域划分和文献现有方法,本文提出的ISAC算法可获得更高的感知精度和误码率性能.