本文针对烟草业务系统日常运维中,对生产异常,特别是物料损耗异常发现难、追溯排查难的问题,设计并实现了一种基于双向长短期记忆模型(bi-directional long short-term memory,Bi-LSTM)和自注意力机制的损耗异常分析模型。以烟丝损耗异...本文针对烟草业务系统日常运维中,对生产异常,特别是物料损耗异常发现难、追溯排查难的问题,设计并实现了一种基于双向长短期记忆模型(bi-directional long short-term memory,Bi-LSTM)和自注意力机制的损耗异常分析模型。以烟丝损耗异常检查为例介绍该模型,以卷包系统的时序剔除数据为输入,判断原材料损耗是否存在异常。该分析模型可用于烟草业务系统日常监控运维,自动识别各生产阶段物料损耗异常,并通过注意力权重从空间和时间维度解释分析结果,为人工排查提供先验,辅助生产管理,提升运维系统的智能化。展开更多
文摘热轧带钢是钢铁行业的重要产品,其表面缺陷是影响产品质量的重要因素。针对传统缺陷检测算法存在的过程繁琐、精度不足和效率低下等问题,提出一种基于改进更快速区域卷积神经网络(faster region-based convolutional neural network,Faster R-CNN)的检测算法,实现对热轧带钢表面缺陷的高效、高精度检测。首先,采用特征相加的方法对底层细节特征和高层语义特征进行融合;然后,采用精准的感兴趣区域池化(precise region of interest pooling,Precise ROI Pooling)获取固定大小的特征向量,避免特征出现位置偏差;最后,利用均值偏移聚类算法对带钢数据集进行聚类,获得适用于热轧带钢表面缺陷检测的先验框尺寸。实验结果表明,所提算法在热轧带钢表面缺陷检测数据集上的平均精度均值达到了85.34%,检测速度为23.5帧/s,且鲁棒性良好,满足实际的工业检测需求。
文摘本文针对烟草业务系统日常运维中,对生产异常,特别是物料损耗异常发现难、追溯排查难的问题,设计并实现了一种基于双向长短期记忆模型(bi-directional long short-term memory,Bi-LSTM)和自注意力机制的损耗异常分析模型。以烟丝损耗异常检查为例介绍该模型,以卷包系统的时序剔除数据为输入,判断原材料损耗是否存在异常。该分析模型可用于烟草业务系统日常监控运维,自动识别各生产阶段物料损耗异常,并通过注意力权重从空间和时间维度解释分析结果,为人工排查提供先验,辅助生产管理,提升运维系统的智能化。