针对传统数值预报模式计算时间长和计算资源消耗大的问题,以及现有深度学习预报方法在温度预报结果上不精确,且预测结果模糊的问题,提出了一个新的温度预报模型。首先,设计了一个时空信息捕捉模块,将该模块捕获的长期依赖信息,作为扩散...针对传统数值预报模式计算时间长和计算资源消耗大的问题,以及现有深度学习预报方法在温度预报结果上不精确,且预测结果模糊的问题,提出了一个新的温度预报模型。首先,设计了一个时空信息捕捉模块,将该模块捕获的长期依赖信息,作为扩散模型的生成条件,赋予扩散模型预报的能力;其次,设计了一个新的平衡损失函数,同时保护了扩散模型的生成能力和时空信息捕捉模块对时空信息的捕捉能力;最后,基于美国国家环境预报中心的再分析数据进行预报,与现有的深度学习方法相比,所提模型预报结果的质量在均方误差(mean square error,MSE)上降低了17.3%,在均方根误差(root mean square error,RMSE)上降低了9.14%,在峰值信噪比(peak signal to noise ratio,PSNR)上提升了5.1%。改进的扩散模型能有效地捕捉时空依赖的关系,有效地进行时空序列预测,效果优于其他对比方法。展开更多
针对多变量时序(Multivariate Time Series,MTS)分类中长序列数据难以捕捉时序特征的问题,提出一种基于双向稀疏Transformer的时序分类模型BST(Bidirectional Sparse Transformer),提高了MTS分类任务的准确度.BST模型使用Transformer框...针对多变量时序(Multivariate Time Series,MTS)分类中长序列数据难以捕捉时序特征的问题,提出一种基于双向稀疏Transformer的时序分类模型BST(Bidirectional Sparse Transformer),提高了MTS分类任务的准确度.BST模型使用Transformer框架,构建了一种基于活跃度得分的双向稀疏注意力机制.基于KL散度构建活跃度评价函数,并将评价函数的非对称问题转变为对称权重问题.据此,对原有查询矩阵、键值矩阵进行双向稀疏化,从而降低原Transformer模型中自注意力机制运算的时间复杂度.实验结果显示,BST模型在9个长序列数据集上取得最高平均排名,在临界差异图中领先第2名35.7%,对于具有强时序性的乙醇浓度数据集(Ethanol Concentration,EC),分类准确率提高30.9%.展开更多
文摘针对传统数值预报模式计算时间长和计算资源消耗大的问题,以及现有深度学习预报方法在温度预报结果上不精确,且预测结果模糊的问题,提出了一个新的温度预报模型。首先,设计了一个时空信息捕捉模块,将该模块捕获的长期依赖信息,作为扩散模型的生成条件,赋予扩散模型预报的能力;其次,设计了一个新的平衡损失函数,同时保护了扩散模型的生成能力和时空信息捕捉模块对时空信息的捕捉能力;最后,基于美国国家环境预报中心的再分析数据进行预报,与现有的深度学习方法相比,所提模型预报结果的质量在均方误差(mean square error,MSE)上降低了17.3%,在均方根误差(root mean square error,RMSE)上降低了9.14%,在峰值信噪比(peak signal to noise ratio,PSNR)上提升了5.1%。改进的扩散模型能有效地捕捉时空依赖的关系,有效地进行时空序列预测,效果优于其他对比方法。