目前数据中心网络(data center network,DCN)的负载均衡方法存在对大小流的调度缺乏全局实时检测等不足,部分大流会造成拥塞、负载不均衡和带宽碎片等问题.针对上述问题,提出了一种SDN网络流量负载均衡算法—DSA-D.首先,对流量进行分类...目前数据中心网络(data center network,DCN)的负载均衡方法存在对大小流的调度缺乏全局实时检测等不足,部分大流会造成拥塞、负载不均衡和带宽碎片等问题.针对上述问题,提出了一种SDN网络流量负载均衡算法—DSA-D.首先,对流量进行分类,为大流计算所有源至目的主机可达路径的最短跳数路径集;然后,根据LLDP和ECHO测量链路时延以求得时延最优路径集;最后,采用概率拟合算法分配路径,实现数据中心网络流量负载均衡.在相同场景下的实验结果表明,与ECMP、Hedera和DIFF算法相比,DSA-D算法具有更好的吞吐量、链路带宽利用率和平均往返时延.展开更多
针对基于传感器的行为识别任务中识别场景单一且固定的问题,提出一种多场景下基于传感器的行为识别迁移模型,由基于传感器的动态感知算法(dynamic perception algorithm,DPA)和自适应场景的行为识别迁移方法(adaptive scene human recog...针对基于传感器的行为识别任务中识别场景单一且固定的问题,提出一种多场景下基于传感器的行为识别迁移模型,由基于传感器的动态感知算法(dynamic perception algorithm,DPA)和自适应场景的行为识别迁移方法(adaptive scene human recognition,AHR)两部分组成,解决在固定场景下对传感器的依赖性以及在场景转换时识别模型失效的问题。DPA提出两阶段迁移模式,将行为识别阶段和模型迁移阶段同步推进,保证模型在传感器异动发生后仍能持续拥有识别能力。进一步提出AHR场景迁移方法,实现模型在多场景下的行为识别能力。实验验证该模型具有更优的适应性和可扩展性。展开更多
文摘目前数据中心网络(data center network,DCN)的负载均衡方法存在对大小流的调度缺乏全局实时检测等不足,部分大流会造成拥塞、负载不均衡和带宽碎片等问题.针对上述问题,提出了一种SDN网络流量负载均衡算法—DSA-D.首先,对流量进行分类,为大流计算所有源至目的主机可达路径的最短跳数路径集;然后,根据LLDP和ECHO测量链路时延以求得时延最优路径集;最后,采用概率拟合算法分配路径,实现数据中心网络流量负载均衡.在相同场景下的实验结果表明,与ECMP、Hedera和DIFF算法相比,DSA-D算法具有更好的吞吐量、链路带宽利用率和平均往返时延.
文摘针对基于传感器的行为识别任务中识别场景单一且固定的问题,提出一种多场景下基于传感器的行为识别迁移模型,由基于传感器的动态感知算法(dynamic perception algorithm,DPA)和自适应场景的行为识别迁移方法(adaptive scene human recognition,AHR)两部分组成,解决在固定场景下对传感器的依赖性以及在场景转换时识别模型失效的问题。DPA提出两阶段迁移模式,将行为识别阶段和模型迁移阶段同步推进,保证模型在传感器异动发生后仍能持续拥有识别能力。进一步提出AHR场景迁移方法,实现模型在多场景下的行为识别能力。实验验证该模型具有更优的适应性和可扩展性。