The strength development law of γ-type dicalcium silicate (γ-C_(2)S) under different carbonation processes was investigated,and the carbonation mechanism of γ-C_(2)S under the action of NH_(4)HCO_(3) was clarified ...The strength development law of γ-type dicalcium silicate (γ-C_(2)S) under different carbonation processes was investigated,and the carbonation mechanism of γ-C_(2)S under the action of NH_(4)HCO_(3) was clarified by using a wide range of test methods,including XRD and SEM.A method of saturated NH_(4)HCO_(3) solution as a curing agent was identified to improve the carbonation efficiency and enhance the carbonation degree of γ-C_(2)S,and then a high-strength carbonated specimen was obtained.Microhardness analysis and SEM morphology analysis were conducted on the carbonised specimens obtained under atmospheric pressure carbonisation conditions using the curing agent.It was found that γ-C_(2)S could perform carbonisation well under atmospheric pressure,which promoted the carbonisation efficiency and decreased the carbonisation cost simultaneously.Therefore,a new carbonisation process solution was proposed for the rapid carbonisation of γ-C_(2)S.展开更多
The adsorption behavior of water on ZSM-5 was simulated by using the grand canonical ensemble Monte Carlo (GCEMC) method.The geometric structure and properties of ZSM-5 were first analysed by the Connolly surface meth...The adsorption behavior of water on ZSM-5 was simulated by using the grand canonical ensemble Monte Carlo (GCEMC) method.The geometric structure and properties of ZSM-5 were first analysed by the Connolly surface methods and Solvent surface methods.Simulation results showed that Connolly free volume and the volume of water molecular inaccessible in zeolite gradually decreased with decreasing zeolite ratio nSi/nAl.ZSM-5 zeolite was strongly hydrophobic under low pressure conditions,and its adsorption capacity would increase with increasing pressure.Desorption curves had a certain lag,and this proved the existence of capillary rally phenomenon.The adsorption capacity of ZSM-5 zeolite exchanged by K+,Na+,Ca2+ had a significant change,and increased with increasing aperture size.The adsorption capacity of zeolite increased with Si atoms replaced by Ti atoms in zeolite matrix,while it would decrease with increasing number of Al atoms replaced by Ti atoms.At the same adsorption capacity,the absorption heat reduced with increasing nSi/nAl ratio or aperture size.展开更多
基金Funded by Hubei Technology Innovation Key Program (No.2018AAA004)。
文摘The strength development law of γ-type dicalcium silicate (γ-C_(2)S) under different carbonation processes was investigated,and the carbonation mechanism of γ-C_(2)S under the action of NH_(4)HCO_(3) was clarified by using a wide range of test methods,including XRD and SEM.A method of saturated NH_(4)HCO_(3) solution as a curing agent was identified to improve the carbonation efficiency and enhance the carbonation degree of γ-C_(2)S,and then a high-strength carbonated specimen was obtained.Microhardness analysis and SEM morphology analysis were conducted on the carbonised specimens obtained under atmospheric pressure carbonisation conditions using the curing agent.It was found that γ-C_(2)S could perform carbonisation well under atmospheric pressure,which promoted the carbonisation efficiency and decreased the carbonisation cost simultaneously.Therefore,a new carbonisation process solution was proposed for the rapid carbonisation of γ-C_(2)S.
文摘The adsorption behavior of water on ZSM-5 was simulated by using the grand canonical ensemble Monte Carlo (GCEMC) method.The geometric structure and properties of ZSM-5 were first analysed by the Connolly surface methods and Solvent surface methods.Simulation results showed that Connolly free volume and the volume of water molecular inaccessible in zeolite gradually decreased with decreasing zeolite ratio nSi/nAl.ZSM-5 zeolite was strongly hydrophobic under low pressure conditions,and its adsorption capacity would increase with increasing pressure.Desorption curves had a certain lag,and this proved the existence of capillary rally phenomenon.The adsorption capacity of ZSM-5 zeolite exchanged by K+,Na+,Ca2+ had a significant change,and increased with increasing aperture size.The adsorption capacity of zeolite increased with Si atoms replaced by Ti atoms in zeolite matrix,while it would decrease with increasing number of Al atoms replaced by Ti atoms.At the same adsorption capacity,the absorption heat reduced with increasing nSi/nAl ratio or aperture size.