岩石的短期和长期力学性能和变形特性对工程长期稳定与安全有着重要的影响。传统的本构模型难以统一描述不同岩石材料的短长期力学特性,而基于深度学习方法的理论可在不引入其他弹塑性参数以及本构规律的情况下预测不同岩石的力学特性...岩石的短期和长期力学性能和变形特性对工程长期稳定与安全有着重要的影响。传统的本构模型难以统一描述不同岩石材料的短长期力学特性,而基于深度学习方法的理论可在不引入其他弹塑性参数以及本构规律的情况下预测不同岩石的力学特性。长短期记忆(long short-term mernory,简称LSTM)深度学习算法适用于处理具有时间序列的数据任务,用于预测岩石短长期力学特性具有显著优势。通过引入LSTM算法,分别根据三轴压缩加载路径和应力松弛随时间变化的规律构建序列数据,建立了灰砂岩在常规三轴压缩以及应力松弛下的力学特性预测模型。与试验数据进行对比,可以证明基于深度学习的岩石短长期力学预测本构模型的准确性。为进一步提升模型工程应用价值,将LSTM本构模型嵌入到有限元法(finite element method,简称FEM)框架中进行数值实现,并应用于灰砂岩变形特性的模拟。对比结果表明,LSTM-FEM方法具有较好地预测岩石短长期变形特性的能力。展开更多
断层错动诱发上覆土体破坏对跨越断层的埋地管道结构安全构成巨大威胁,是复杂环境地下管线设计中不可忽略的场地因素。既有成果较少涉及正断层和逆断层错动影响下的解析解分析,且针对断层-管道相互作用的理论研究一般将管道结构视为连...断层错动诱发上覆土体破坏对跨越断层的埋地管道结构安全构成巨大威胁,是复杂环境地下管线设计中不可忽略的场地因素。既有成果较少涉及正断层和逆断层错动影响下的解析解分析,且针对断层-管道相互作用的理论研究一般将管道结构视为连续管道,较少考虑管道接口的影响。首先,在简化SSR(静止区stationaryzone,剪切区shearingzone,刚体区rigid body zone)土体变形模型的基础上,结合erf函数和erfc函数,得到了正断层和逆断层错动影响下的土体位移曲线;其次,引入双参数Pasternak地基模型,对管道微元进行受力分析,借助有限差分法求解得到埋地管道结构的变形和内力;最后,将理论解析解和已有的试验结果及数值模拟结果进行对比验证,获得了较好的一致性。此外,针对断层倾角、断层与管道交点位置和接口转动刚度等关键物理特征参数进行了敏感性分析。结果表明:断层倾角会改变管道位移曲线和轴向应力曲线位置,但其位移最大值和轴向应力最大值基本一致,而断层与管道交点位置不仅会改变管道位移曲线和轴向应力曲线形状,其轴向应力最大值也将发生改变;随着接口转动刚度增大,管道最大轴向应力值随之增大,当接口转动刚度足够大时,可将非连续管道视作连续管道进行计算。展开更多
文摘岩石的短期和长期力学性能和变形特性对工程长期稳定与安全有着重要的影响。传统的本构模型难以统一描述不同岩石材料的短长期力学特性,而基于深度学习方法的理论可在不引入其他弹塑性参数以及本构规律的情况下预测不同岩石的力学特性。长短期记忆(long short-term mernory,简称LSTM)深度学习算法适用于处理具有时间序列的数据任务,用于预测岩石短长期力学特性具有显著优势。通过引入LSTM算法,分别根据三轴压缩加载路径和应力松弛随时间变化的规律构建序列数据,建立了灰砂岩在常规三轴压缩以及应力松弛下的力学特性预测模型。与试验数据进行对比,可以证明基于深度学习的岩石短长期力学预测本构模型的准确性。为进一步提升模型工程应用价值,将LSTM本构模型嵌入到有限元法(finite element method,简称FEM)框架中进行数值实现,并应用于灰砂岩变形特性的模拟。对比结果表明,LSTM-FEM方法具有较好地预测岩石短长期变形特性的能力。
文摘断层错动诱发上覆土体破坏对跨越断层的埋地管道结构安全构成巨大威胁,是复杂环境地下管线设计中不可忽略的场地因素。既有成果较少涉及正断层和逆断层错动影响下的解析解分析,且针对断层-管道相互作用的理论研究一般将管道结构视为连续管道,较少考虑管道接口的影响。首先,在简化SSR(静止区stationaryzone,剪切区shearingzone,刚体区rigid body zone)土体变形模型的基础上,结合erf函数和erfc函数,得到了正断层和逆断层错动影响下的土体位移曲线;其次,引入双参数Pasternak地基模型,对管道微元进行受力分析,借助有限差分法求解得到埋地管道结构的变形和内力;最后,将理论解析解和已有的试验结果及数值模拟结果进行对比验证,获得了较好的一致性。此外,针对断层倾角、断层与管道交点位置和接口转动刚度等关键物理特征参数进行了敏感性分析。结果表明:断层倾角会改变管道位移曲线和轴向应力曲线位置,但其位移最大值和轴向应力最大值基本一致,而断层与管道交点位置不仅会改变管道位移曲线和轴向应力曲线形状,其轴向应力最大值也将发生改变;随着接口转动刚度增大,管道最大轴向应力值随之增大,当接口转动刚度足够大时,可将非连续管道视作连续管道进行计算。