桥梁健康监测数据的挖掘和分析工作只有在整体数据质量符合基本要求的有效数据基础上进行,才能保障如模态参数识别、损伤识别和状态评估等后续工作的准确性。因此,基于量化改进的探索性分析方法(Exploratory Data Analysis,EDA)和相关...桥梁健康监测数据的挖掘和分析工作只有在整体数据质量符合基本要求的有效数据基础上进行,才能保障如模态参数识别、损伤识别和状态评估等后续工作的准确性。因此,基于量化改进的探索性分析方法(Exploratory Data Analysis,EDA)和相关性分析从数据完整性、准确性和一致性的角度建立了桥梁健康监测静、动态数据的质量评估方法。对某大跨度斜拉桥健康监测系统的静、动态数据进行质量评估,通过对比分析了不同评估质量的温度数据、静挠度数据和不同评估质量的主梁竖向加速度动力信号的模态参数识别的稳定图,验证了所提方法的正确性。结果表明,所提评估方法能够快速有效地判断数据质量的好坏,进而确保桥梁结构的服役性能评估和预测的准确性,有利于提高健康监测数据的可用性和效能。展开更多
为有效识别桥梁健康监测数据的异常,减少误预警、漏预警现象,保障桥梁监测数据的质量和有效性,针对大跨度斜拉桥长期监测数据的缺失、离群和漂移3类异常数据,提出基于时间序列压缩分割的监测数据异常识别算法。该算法将原始监测数据时...为有效识别桥梁健康监测数据的异常,减少误预警、漏预警现象,保障桥梁监测数据的质量和有效性,针对大跨度斜拉桥长期监测数据的缺失、离群和漂移3类异常数据,提出基于时间序列压缩分割的监测数据异常识别算法。该算法将原始监测数据时间序列通过基于序列重要点(Series Importance Point, SIP)的时间序列线性分段(Piecewise Linear Represent, PLR)算法(PLR_SIP)得到数条时间子序列;然后采用欧氏距离进行时间子序列的相似性分析,并基于改进的局部离群因子(Local Outlier Factor, LOF)算法计算每条时间子序列的局部离群因子;最后将其与设定的阈值相比较,从而识别出监测数据的异常。为验证该算法的准确性与工程实用性,对某公路大跨度斜拉桥健康监测数据进行异常识别。结果表明:采用PLR_SIP算法对原始时间序列压缩分割得到的时间子序列能够准确地反映原序列的变化趋势和范围;改进的LOF算法突破了传统LOF算法仅能识别离群值这类无持续时间异常的局限性,能够排除噪声的干扰,实现对离群、缺失和漂移3种异常的识别。该算法无需定义训练集,直接以原始监测数据作为算法的输入,同时能够自适应调整阈值参数,具有良好的可扩展性、实时性、准确性和高效性,适用于处理实时、大量的桥梁健康监测数据。展开更多
文摘桥梁健康监测数据的挖掘和分析工作只有在整体数据质量符合基本要求的有效数据基础上进行,才能保障如模态参数识别、损伤识别和状态评估等后续工作的准确性。因此,基于量化改进的探索性分析方法(Exploratory Data Analysis,EDA)和相关性分析从数据完整性、准确性和一致性的角度建立了桥梁健康监测静、动态数据的质量评估方法。对某大跨度斜拉桥健康监测系统的静、动态数据进行质量评估,通过对比分析了不同评估质量的温度数据、静挠度数据和不同评估质量的主梁竖向加速度动力信号的模态参数识别的稳定图,验证了所提方法的正确性。结果表明,所提评估方法能够快速有效地判断数据质量的好坏,进而确保桥梁结构的服役性能评估和预测的准确性,有利于提高健康监测数据的可用性和效能。
文摘为有效识别桥梁健康监测数据的异常,减少误预警、漏预警现象,保障桥梁监测数据的质量和有效性,针对大跨度斜拉桥长期监测数据的缺失、离群和漂移3类异常数据,提出基于时间序列压缩分割的监测数据异常识别算法。该算法将原始监测数据时间序列通过基于序列重要点(Series Importance Point, SIP)的时间序列线性分段(Piecewise Linear Represent, PLR)算法(PLR_SIP)得到数条时间子序列;然后采用欧氏距离进行时间子序列的相似性分析,并基于改进的局部离群因子(Local Outlier Factor, LOF)算法计算每条时间子序列的局部离群因子;最后将其与设定的阈值相比较,从而识别出监测数据的异常。为验证该算法的准确性与工程实用性,对某公路大跨度斜拉桥健康监测数据进行异常识别。结果表明:采用PLR_SIP算法对原始时间序列压缩分割得到的时间子序列能够准确地反映原序列的变化趋势和范围;改进的LOF算法突破了传统LOF算法仅能识别离群值这类无持续时间异常的局限性,能够排除噪声的干扰,实现对离群、缺失和漂移3种异常的识别。该算法无需定义训练集,直接以原始监测数据作为算法的输入,同时能够自适应调整阈值参数,具有良好的可扩展性、实时性、准确性和高效性,适用于处理实时、大量的桥梁健康监测数据。
文摘针对现有基于数据驱动的随机子空间(data-driven stochastic subspace identification,DATA-SSI)算法存在的不足,无法实现稳定图中真假模态的智能化筛选,提出了一种新的模态参数智能化识别算法。首先通过引入滑窗技术来实现对输入信号的合理划分,以避免虚假模态和模态遗漏现象的出现;其次通过引入OPTICS(ordering points to identify the clustering structure)密度聚类算法实现稳定图中真实模态的智能化筛选,最后将所提算法运用于某实际大型斜拉桥主梁结构的频率和模态振型识别过程中。结果表明,所提改进算法识别的频率值结果与理论值(MIDAS有限元结果)以及实际值(现场动力特性实测结果)间的误差均在5%以内,且识别的模态振型图与理论模态振型图具有很高的相似性。