多跑道机场飞行区运行效率低下会导致空域-跑道系统容流供需失衡,进而造成终端区空域交通拥堵、航班延误现象频发。为提升多跑道机场终端区运行效率,借助全空域与机场模型软件(total airspace and airport modeler,TAAM)建立空域仿真模...多跑道机场飞行区运行效率低下会导致空域-跑道系统容流供需失衡,进而造成终端区空域交通拥堵、航班延误现象频发。为提升多跑道机场终端区运行效率,借助全空域与机场模型软件(total airspace and airport modeler,TAAM)建立空域仿真模型,针对不同运行模式动态转换下对终端区交通流走向、扇区开合等空域时空特性的影响进行分析,提出1种考虑不同运行时段内终端区机场走廊口流量配比和进离港流量分布的动态多跑道使用策略优化方法。首先,使用TAAM综合考虑不同跑道运行模式下各扇区内航班流量、高度变更、移交协调及冲突解脱对管制负荷的影响,拟合得出不同跑道运行模式下基于当量航空器架次的各扇区管制负荷函数。以终端区内航班平均飞行时间、平均延误时间及管制员工作负荷为优化目标,建立了跑道使用策略优化模型。设计了1种基于航空器基本性能数据库(the base aircraft data,BADA)的多目标非支配排序遗传算法(NSGA-Ⅱ),并结合机场实际运行条件在无运行限制、运行方向限制、运行模式限制等5种场景下进行仿真计算。对各场景Pareto最优解集进行评价得出不同场景下最优跑道使用策略,并使用TAAM进行仿真对比验证。结果表明:无运行限制和运行方向限制相较于单一跑道运行模式的航班服务效率提升10.15%,5.01%;管制员工作负荷减少3.91%,3.4%;延误时间减少28.86%,19.46%。展开更多
城市轨道交通起讫点(origin-destination,OD)客流短时预测在智能交通系统中意义重大,它为交通管控策略实施以及出行者出行选择提供了重要的决策依据。卷积神经网络被广泛用于交通数据空间相关性提取,但其平移不变性与局部敏感性导致该...城市轨道交通起讫点(origin-destination,OD)客流短时预测在智能交通系统中意义重大,它为交通管控策略实施以及出行者出行选择提供了重要的决策依据。卷积神经网络被广泛用于交通数据空间相关性提取,但其平移不变性与局部敏感性导致该方法更重视局部特征而忽视全局特征。本研究构建了基于注意力机制的异构数据特征提取机模型(heterogeneous data feature extraction machine,HDFEM)以实现OD矩阵空间相关性的全局感知。该模型从时空特征和用地属性特征出发,构造异构数据OD时空张量与地理信息张量,依托模型张量编码层对异构数据张量进行分割与编码,通过注意力机制连接各张量块特征,提取OD矩阵中各个部分间的空间相关性。该方法不仅实现了异构数据与OD客流数据的融合,还兼顾了卷积神经网络模型未能处理的OD矩阵远距离特征,进而帮助模型更全面地学习OD客流的空间特征。对于OD时序特性,该模型使用了长短时记忆网络来处理。在杭州地铁自动售检票系统(auto fare collection,AFC)数据集上的实验结果表明:HDFEM模型相对于基于卷积神经网络的预测模型,其均方误差、平均绝对误差与标准均方根误差分别下降了4.1%,2.5%,2%,验证了全局OD特征感知对于城市轨道交通OD客流预测的重要性。展开更多
针对传统控制方法下的智能网联车辆(connected and autonomous vehicle,CAV)在动态交通环境中通行能耗较高且效率较低等问题,研究了基于强化学习的CAV通行控制方法,旨在降低车辆能源消耗,提升车辆通行效率以及行驶舒适度。通过考虑CAV...针对传统控制方法下的智能网联车辆(connected and autonomous vehicle,CAV)在动态交通环境中通行能耗较高且效率较低等问题,研究了基于强化学习的CAV通行控制方法,旨在降低车辆能源消耗,提升车辆通行效率以及行驶舒适度。通过考虑CAV与交叉口信控系统的信息交互和物理环境,收集信号相位和信号配时(SPaT)以及前车速度和位置等信息,构建强化学习框架的状态空间。以电池能量回收的上限作为边界条件,建立CAV的行驶能耗模型,并基于车辆行驶的关键特征指标,如单位时间电能能耗、通行距离以及加速度变化率,设计多目标加权奖励函数。利用层次分析法确定各指标的权重,进而采用深度确定性策略梯度算法对模型进行训练,并通过梯度下降方法对算法参数进行调整和更新。采用SUMO平台开展仿真实验,实验结果表明:在设计的算法控制下的CAV各方面行驶性能最为均衡,相较于DQN算法电能消耗和加速度变化率均值分别降低了9.22%和18.77%;相较于Krauss跟驰模型行程时间缩短了8.39%。本研究提出的CAV通行控制方法在降低车辆能耗、提高行驶效率和舒适性等方面具有较好的可行性和有效性。展开更多
互通式立交承担着不同方向交通流的流向转换功能,是道路交通网络的重要节点。目前高密度立交在城市道路网络中已愈发常见,高密度立交之间的间距比普通立交更小,车辆交织更为密集,驾驶人需要在更短的时间内进行分合流驾驶操作。为探究立...互通式立交承担着不同方向交通流的流向转换功能,是道路交通网络的重要节点。目前高密度立交在城市道路网络中已愈发常见,高密度立交之间的间距比普通立交更小,车辆交织更为密集,驾驶人需要在更短的时间内进行分合流驾驶操作。为探究立交间距对驾驶人精神负荷的影响与高密度立交出入口区段的驾驶人精神负荷统计特性,在重庆市内环快速路上选择了1段包含4座连续立交的路段作为实验对象,其中3座立交为高密度立交。通过车载仪器采集47名驾驶人在实车实验过程中的心电数据,对在高密度立交出入口区段与普通间距立交出入口区段的驾驶人心率变异性时域和频域指标进行差异性分析,得到了驾驶人在高密度立交与普通间距立交出入口区段的精神负荷分布特征。研究结果表明:驾驶人在经过普通间距立交出入口区段和高密度立交出入口区段时的心率变异性时域指标不存在显著性差异,频域指标心率变异性的低、高频功率的比值(ratio of low-frequency to high-frequency,LF/HF)存在显著性差异,频域指标LF/HF可作为评价驾驶人精神负荷在立交出入口区段的主要指标;驾驶人在经过高密度立交入口区段时,频域指标LF/HF比经过普通间距立交入口区段时显著增加,立交间距不足会增加驾驶人在立交入口区段的精神负荷;驾驶人在经过普通间距立交出口区段时的心率变异性频域指标LF/HF比经过高密度立交出口区段时显著增加,即驾驶人通过普通间距立交出口区段的精神负荷更大;对于高密度立交群,驾驶人在入口区段的精神负荷水平要略高于出口区段。展开更多
文摘多跑道机场飞行区运行效率低下会导致空域-跑道系统容流供需失衡,进而造成终端区空域交通拥堵、航班延误现象频发。为提升多跑道机场终端区运行效率,借助全空域与机场模型软件(total airspace and airport modeler,TAAM)建立空域仿真模型,针对不同运行模式动态转换下对终端区交通流走向、扇区开合等空域时空特性的影响进行分析,提出1种考虑不同运行时段内终端区机场走廊口流量配比和进离港流量分布的动态多跑道使用策略优化方法。首先,使用TAAM综合考虑不同跑道运行模式下各扇区内航班流量、高度变更、移交协调及冲突解脱对管制负荷的影响,拟合得出不同跑道运行模式下基于当量航空器架次的各扇区管制负荷函数。以终端区内航班平均飞行时间、平均延误时间及管制员工作负荷为优化目标,建立了跑道使用策略优化模型。设计了1种基于航空器基本性能数据库(the base aircraft data,BADA)的多目标非支配排序遗传算法(NSGA-Ⅱ),并结合机场实际运行条件在无运行限制、运行方向限制、运行模式限制等5种场景下进行仿真计算。对各场景Pareto最优解集进行评价得出不同场景下最优跑道使用策略,并使用TAAM进行仿真对比验证。结果表明:无运行限制和运行方向限制相较于单一跑道运行模式的航班服务效率提升10.15%,5.01%;管制员工作负荷减少3.91%,3.4%;延误时间减少28.86%,19.46%。
文摘城市轨道交通起讫点(origin-destination,OD)客流短时预测在智能交通系统中意义重大,它为交通管控策略实施以及出行者出行选择提供了重要的决策依据。卷积神经网络被广泛用于交通数据空间相关性提取,但其平移不变性与局部敏感性导致该方法更重视局部特征而忽视全局特征。本研究构建了基于注意力机制的异构数据特征提取机模型(heterogeneous data feature extraction machine,HDFEM)以实现OD矩阵空间相关性的全局感知。该模型从时空特征和用地属性特征出发,构造异构数据OD时空张量与地理信息张量,依托模型张量编码层对异构数据张量进行分割与编码,通过注意力机制连接各张量块特征,提取OD矩阵中各个部分间的空间相关性。该方法不仅实现了异构数据与OD客流数据的融合,还兼顾了卷积神经网络模型未能处理的OD矩阵远距离特征,进而帮助模型更全面地学习OD客流的空间特征。对于OD时序特性,该模型使用了长短时记忆网络来处理。在杭州地铁自动售检票系统(auto fare collection,AFC)数据集上的实验结果表明:HDFEM模型相对于基于卷积神经网络的预测模型,其均方误差、平均绝对误差与标准均方根误差分别下降了4.1%,2.5%,2%,验证了全局OD特征感知对于城市轨道交通OD客流预测的重要性。
文摘针对传统控制方法下的智能网联车辆(connected and autonomous vehicle,CAV)在动态交通环境中通行能耗较高且效率较低等问题,研究了基于强化学习的CAV通行控制方法,旨在降低车辆能源消耗,提升车辆通行效率以及行驶舒适度。通过考虑CAV与交叉口信控系统的信息交互和物理环境,收集信号相位和信号配时(SPaT)以及前车速度和位置等信息,构建强化学习框架的状态空间。以电池能量回收的上限作为边界条件,建立CAV的行驶能耗模型,并基于车辆行驶的关键特征指标,如单位时间电能能耗、通行距离以及加速度变化率,设计多目标加权奖励函数。利用层次分析法确定各指标的权重,进而采用深度确定性策略梯度算法对模型进行训练,并通过梯度下降方法对算法参数进行调整和更新。采用SUMO平台开展仿真实验,实验结果表明:在设计的算法控制下的CAV各方面行驶性能最为均衡,相较于DQN算法电能消耗和加速度变化率均值分别降低了9.22%和18.77%;相较于Krauss跟驰模型行程时间缩短了8.39%。本研究提出的CAV通行控制方法在降低车辆能耗、提高行驶效率和舒适性等方面具有较好的可行性和有效性。
文摘互通式立交承担着不同方向交通流的流向转换功能,是道路交通网络的重要节点。目前高密度立交在城市道路网络中已愈发常见,高密度立交之间的间距比普通立交更小,车辆交织更为密集,驾驶人需要在更短的时间内进行分合流驾驶操作。为探究立交间距对驾驶人精神负荷的影响与高密度立交出入口区段的驾驶人精神负荷统计特性,在重庆市内环快速路上选择了1段包含4座连续立交的路段作为实验对象,其中3座立交为高密度立交。通过车载仪器采集47名驾驶人在实车实验过程中的心电数据,对在高密度立交出入口区段与普通间距立交出入口区段的驾驶人心率变异性时域和频域指标进行差异性分析,得到了驾驶人在高密度立交与普通间距立交出入口区段的精神负荷分布特征。研究结果表明:驾驶人在经过普通间距立交出入口区段和高密度立交出入口区段时的心率变异性时域指标不存在显著性差异,频域指标心率变异性的低、高频功率的比值(ratio of low-frequency to high-frequency,LF/HF)存在显著性差异,频域指标LF/HF可作为评价驾驶人精神负荷在立交出入口区段的主要指标;驾驶人在经过高密度立交入口区段时,频域指标LF/HF比经过普通间距立交入口区段时显著增加,立交间距不足会增加驾驶人在立交入口区段的精神负荷;驾驶人在经过普通间距立交出口区段时的心率变异性频域指标LF/HF比经过高密度立交出口区段时显著增加,即驾驶人通过普通间距立交出口区段的精神负荷更大;对于高密度立交群,驾驶人在入口区段的精神负荷水平要略高于出口区段。