选取典型芦苇湿地基于芦苇叶片实测高光谱数据和叶面积指数(Leaf Area Index,LAI),在原始光谱的基础上进行了平滑(R)、一阶微分(FD)、倒数(RT)、对数(LT)、倒数一阶微分(RTFD)、对数一阶微分(LTFD)等六种光谱变换,利用竞争性自适应重加...选取典型芦苇湿地基于芦苇叶片实测高光谱数据和叶面积指数(Leaf Area Index,LAI),在原始光谱的基础上进行了平滑(R)、一阶微分(FD)、倒数(RT)、对数(LT)、倒数一阶微分(RTFD)、对数一阶微分(LTFD)等六种光谱变换,利用竞争性自适应重加权算法(CARS)对不同变换下芦苇LAI特征光谱波段予以筛选,进而用筛选的特征波段采用逐波段组合法(BCI)构建芦苇LAI敏感光谱指数,利用随机森林(RF)、极端梯度提升(XGBoost)以及支持向量机(SVM)回归算法,构建芦苇LAI的高光谱估算模型。结果表明,采用CARS算法筛选不同变换光谱的特征波段构建模型,发现经过FD变换(R~2=0.417,RMSE=0.905)的模型效果最优。在CARS基础上使用筛选过后的特征波段构建植被指数进行建模比较,模型效果最好的是XGBoost(R2=0.620,RMSE=0.826)。展开更多
文摘选取典型芦苇湿地基于芦苇叶片实测高光谱数据和叶面积指数(Leaf Area Index,LAI),在原始光谱的基础上进行了平滑(R)、一阶微分(FD)、倒数(RT)、对数(LT)、倒数一阶微分(RTFD)、对数一阶微分(LTFD)等六种光谱变换,利用竞争性自适应重加权算法(CARS)对不同变换下芦苇LAI特征光谱波段予以筛选,进而用筛选的特征波段采用逐波段组合法(BCI)构建芦苇LAI敏感光谱指数,利用随机森林(RF)、极端梯度提升(XGBoost)以及支持向量机(SVM)回归算法,构建芦苇LAI的高光谱估算模型。结果表明,采用CARS算法筛选不同变换光谱的特征波段构建模型,发现经过FD变换(R~2=0.417,RMSE=0.905)的模型效果最优。在CARS基础上使用筛选过后的特征波段构建植被指数进行建模比较,模型效果最好的是XGBoost(R2=0.620,RMSE=0.826)。