绝缘体上硅(Silicon on insulator,SOI)技术在200~400℃高温器件和集成电路方面有着广泛的应用前景,但对于沟道长度≤0.18μm的短沟道器件在200℃以上的高温下阈值电压漂移量达40%以上,漏电流达μA级,无法满足电路设计要求。本文研究了...绝缘体上硅(Silicon on insulator,SOI)技术在200~400℃高温器件和集成电路方面有着广泛的应用前景,但对于沟道长度≤0.18μm的短沟道器件在200℃以上的高温下阈值电压漂移量达40%以上,漏电流达μA级,无法满足电路设计要求。本文研究了基于0.15μm SOI工艺的1.5 V MOS器件电特性在高温下的退化机理和抑制方法,通过增加栅氧厚度、降低阱浓度、调整轻掺杂漏离子注入工艺等优化方法,实现了一种性能良好的短沟道高温SOI CMOS器件,在25~250℃温度范围内,该器件阈值电压漂移量<30%,饱和电流漂移量<15%,漏电流<1 nA/μm。此外采用仿真的方法分析了器件在高温下的漏区电势和电场的变化规律,将栅诱导漏极泄漏电流效应与器件高温漏电流关联起来,从而定性地解释了SOI短沟道器件高温漏电流退化的机理。展开更多
文摘绝缘体上硅(Silicon on insulator,SOI)技术在200~400℃高温器件和集成电路方面有着广泛的应用前景,但对于沟道长度≤0.18μm的短沟道器件在200℃以上的高温下阈值电压漂移量达40%以上,漏电流达μA级,无法满足电路设计要求。本文研究了基于0.15μm SOI工艺的1.5 V MOS器件电特性在高温下的退化机理和抑制方法,通过增加栅氧厚度、降低阱浓度、调整轻掺杂漏离子注入工艺等优化方法,实现了一种性能良好的短沟道高温SOI CMOS器件,在25~250℃温度范围内,该器件阈值电压漂移量<30%,饱和电流漂移量<15%,漏电流<1 nA/μm。此外采用仿真的方法分析了器件在高温下的漏区电势和电场的变化规律,将栅诱导漏极泄漏电流效应与器件高温漏电流关联起来,从而定性地解释了SOI短沟道器件高温漏电流退化的机理。
文摘采用金属有机物化学气相沉积(Metal organic chemical vapor deposition,MOCVD)技术在101.6 mm(4英寸)半绝缘SiC衬底上开展太赫兹用GaN肖特基势垒二极管(Schottky barrier diode,SBD)外延材料应力演进及缺陷密度控制的研究。提出了一种基于AlGaN过渡层的应力调控方案,实现了外延材料的应力调控;采用低温脉冲式掺杂技术生长n+-GaN层,降低了外延材料的缺陷密度,提升了晶体质量。研制的101.6 mm GaN SBD外延材料的弯曲度(Bow)/翘曲度(Warp)为-12/18μm,(002)/(102)面半高宽为148/239 arcsec,方阻9.2Ω/□,方阻片内不均匀性1.1%,并基于自研材料实现了截止频率为1.12 THz的GaN SBD器件的研制。