We chose a definition of heatwaves (HWs) that has ~4-year recurrence frequency at world hot spots. We first examined the 1940-2022 HWs climatology and trends in lifespan, severity, spatial extent, and recurrence frequ...We chose a definition of heatwaves (HWs) that has ~4-year recurrence frequency at world hot spots. We first examined the 1940-2022 HWs climatology and trends in lifespan, severity, spatial extent, and recurrence frequency. HWs are becoming more frequent and more severe for extratropical mid- and low-latitudes. To euphemize HWs, we here propose a novel clean energy-tapping concept that utilizes the available nano-technology, micro-meteorology knowledge of temperature distribution within/without buildings, and radiative properties of earth atmosphere. The key points for a practical electricity generation scheme from HWs are defogging, insulation, and minimizing the absorption of infrared downward radiation at the cold legs of the thermoelectric generators. One sample realization is presented which, through relay with existing photovoltaic devices, provides all-day electricity supply sufficient for providing air conditioning requirement for a residence (~2000-watt throughput). The provision of power to air conditioning systems, usually imposes a significant stress on traditional city power grids during heatwaves.展开更多
The Douta permit of African Star Resources/Thor Explorations, located in the southeast of Senegal, in the Kédougou-Kéniéba Inlier (western part of the West African Craton), is dominated to the East by m...The Douta permit of African Star Resources/Thor Explorations, located in the southeast of Senegal, in the Kédougou-Kéniéba Inlier (western part of the West African Craton), is dominated to the East by metasedimentary formations such as greywackes, shales, graphitic shales, quartzites, cherts, claystones and breccias characteristic of the Dialé-Daléma basin. To the West, the mafic formations of the Mako volcanic belt are the most common. Metasedimentary rocks are associated with metavolcanosedimentary terms found at the contact zones between the two (2) Birimian groups. These different geological formations are cut by mafic dolerite and gabbro sills and/or dykes, as well as quartz and microgranite veins. The Douta gold project is crossed from North to South by the MTZ (Main Transcurrent Zone), generally oriented NE-SW and becoming N-S towards the North. The permit is characterized by several shear corridors. The rocks are affected by brittle, brittle-ductile to ductile deformations. The gold mineralization is hosted by a NE-trending shear corridor called the Makosa corridor (Makosa shear zone), therefore sub-parallel to the MTZ. It has a subvertical dip (75˚ to 85˚ to the NW). It is associated with a hydrothermal phase characterized by quartz-sericite-epidote-fine, disseminated pyrite and arsenopyrite ± albite ± chlorite paragenesis. These minerals testify to the existence of a low degree of metamorphism (greenschist facies, epizonal domain) in the area. However, metamorphism reaches amphibolite facies in some places, particularly in the vicinity of intrusive bodies, with the presence of hornblende (amphiboles) and plagioclase. The gold mineralization is mainly hosted by two (2) metasedimentary lithological units: meta-greywackes and shales.展开更多
Around 71% of the Earth’s surface is covered by oceans with depths that exceed several kilometers, while continents are geographically enclosed by these vast bodies of water. The principle of fluid mechanics stipulat...Around 71% of the Earth’s surface is covered by oceans with depths that exceed several kilometers, while continents are geographically enclosed by these vast bodies of water. The principle of fluid mechanics stipulates that water yields pressure everywhere in the container that holds it, and the water pressure against the wall of container generates force. Ocean basins are naturally gigantic containers of water, in which continents form the walls of the containers. In this study, we present that the ocean water pressure against the walls of continents generates enormous force, and determine the distribution of this force around continents and estimate its amplitude to be of the order of 1017 N per kilometer of continent width. Our modelling suggests that the stresses yielded by this force are mostly concentrated on the upper part of the continental crust, and their magnitudes reach up to 2.0 - 6.0 MPa. Our results suggest that the force may have significantly impacted the dynamics of continent (lithospheric plate) and its evolution.展开更多
The Roaches Grit in the UK Pennine Basin was a complex deep water deltaic sequence deposited during the Late Carboniferous glacial period. The channels of the upper part of the Roaches Grit, deposited towards the end ...The Roaches Grit in the UK Pennine Basin was a complex deep water deltaic sequence deposited during the Late Carboniferous glacial period. The channels of the upper part of the Roaches Grit, deposited towards the end of the cyclothem after the eustatic minimum, contain evidence for very high seasonal discharges related to strong monsoon rainfall in the catchment areas. In some channels, intense turbulence near the delta front, led to knick point recession and deep incision. These channels were filled with sediments during reduced discharge, including very large sets of cross-bedding up to 16 m thick. Channels were short-lived with frequent avulsions. Over time slightly lower discharges formed laterally migrating channels dominated by bar forms. Different discharge-controlled processes operated on the reactivated delta slope. Incised channels generated turbidity currents during floods which transported sediments directly into the basin far from the delta. Migrating channels built mouth bars;resedimentation during floods formed density currents which then deposited sediment on the lower parts of the slope.展开更多
South of Godé, in the central-western region of Burkina Faso, granitoids of Paleoproterozoic age are similar to those of the Man/Leo shield. This study focused on the petrographic and geochemical characteristics ...South of Godé, in the central-western region of Burkina Faso, granitoids of Paleoproterozoic age are similar to those of the Man/Leo shield. This study focused on the petrographic and geochemical characteristics of these granitoids, with the following results: 1) The tonalite that outcrops in the south-west of the study area belongs to the TTG group or first generation granitoids. They are most often ribboned at outcrop and have a geochemical signature close to that of Archean TTGs. Tonalite has a metaluminous character and the REE spectrum indicates that it may be derived from partial melting of basic magmatic rocks. 2) Biotite granites have no outcrop structure. They are weakly metaluminous to peraluminous and potassic to highly potassic. Their rare earth spectra indicate that they may be derived from the partial melting of TTG granitoids. 3) Geotectonic diagrams show that the granitoids studied to the south of Godé were emplaced in an active tectonic context similar to that of present-day subduction zones.展开更多
The Banfora’s birimian greenstones belt is located in the western part of Burkina Faso (west Africa). Recent petrographic and lithogeochemical studies have highlighted plutons intruding the metasedimentary and metavo...The Banfora’s birimian greenstones belt is located in the western part of Burkina Faso (west Africa). Recent petrographic and lithogeochemical studies have highlighted plutons intruding the metasedimentary and metavolcanic series. These plutonic rocks are composed of leucogranites belonging to the so-called Ferkessedougou’s or Ferké’s batholith, granites, granodiorites, monzodiorites and quartz monzonites. From the lithogeochemical studies, these plutonic rocks have a calc-alkaline and peraluminous character. The rare earth elements spectra of the Ferké’s leucogranites let distinguished two sub-facies. One of the sub-facies is composed of quartz monzonite to granite, while the other is granitic sensu stricto. However, all these plutonic rocks were emplaced in a geodynamic context of subduction followed by collision.展开更多
The amber deposits from the Albian-Cenomanian in Myanmar have emerged as a pivotal source for exceptionally abundant fossil insect fauna since their initial discovery. Recent studies have increasingly focused on eluci...The amber deposits from the Albian-Cenomanian in Myanmar have emerged as a pivotal source for exceptionally abundant fossil insect fauna since their initial discovery. Recent studies have increasingly focused on elucidating the fern inventory and examining newly available fossils from Myanmar amber, suggesting a diverse fern flora that once thrived in Cretaceous forests. Through investigations of amber collections, with particular emphasis on sporangium structures—especially the annulus types preserved in amber inclusions—this study revealed additional novelties within the Cyatheales and Schizaeales in mid-Cretaceous Myanmar amber forests. The described specimens and newly discovered fossils provide compelling evidence that Polypodiales were not only diverse and abundant but also that other fern lineages, such as Cyatheales and Schizaeales, coexisted in these ancient forest ecosystems. This study reveals the high diversity of ferns in the mid-Cretaceous Myanmar area, while also implying the paleoecological and paleogeographical significance of the Mesozoic Burmese amber forests.展开更多
The present study, carried out in the forest (Daloa) and pre-forest (M’Bahiakro) zones of Cote d’Ivoire, aims to determine soil landscape units using the coding method. Geological maps and satellite images (SRTM and...The present study, carried out in the forest (Daloa) and pre-forest (M’Bahiakro) zones of Cote d’Ivoire, aims to determine soil landscape units using the coding method. Geological maps and satellite images (SRTM and Landsat) were used for this purpose. The methodological approach adopted consisted in producing maps of slope, geology, land use and topography using the codification method. These various maps, integrated into a GIS using the coding aggregation method, were used to generate soil landscape maps. Twenty-seven (27) soil landscapes have been identified for the pre-forest zone (M’Bahiakro), with a strong dominance of acid rock over a moderate relief under savannah, forest/degraded forest and crops/fallow. However, the forest zone (Daloa), with forty-one (41) soil landscapes identified over the entire zone, is characterized by a majority of mafic rocks on a medium altitude under forest/degraded forest, water and crops/fallow. The criteria used from the codification method (sum of aggregations) made it possible to predict the spatial distribution of soil map units according to agro-ecological environments in the humid intertropical zone. This is essential for the orientation and reinforcement of soil survey tools. However, a comparative evaluation of the different multicriteria analysis methods for coding and weighting soil landscape unit mapping would enable us to identify the most suitable and efficient method for drawing up base maps for soil surveys.展开更多
This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic d...This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.展开更多
This study examines the turbidite dynamics and hydrocarbon reservoir formation in Ghana’s Tano Basin, which is located in coastal West Africa. Through an exploration of geological processes spanning millions of years...This study examines the turbidite dynamics and hydrocarbon reservoir formation in Ghana’s Tano Basin, which is located in coastal West Africa. Through an exploration of geological processes spanning millions of years, we uncover key factors shaping hydrocarbon accumulation, including source rock richness, temperature, pressure, and geological structures. The research offers valuable insights applicable to exploration, management, and sustainable resource exploitation in coastal West Africa. It facilitates the identification of exploration targets with higher hydrocarbon potential, enables the anticipation of reservoir potential within the Tano Basin, and assists in tailoring exploration and management strategies to specific geological conditions of the Tano Basin. Analysis of fluvial channels sheds light on their impact on landscape formation and hydrocarbon exploration. The investigation into turbidite systems unveils intricate interactions involving tectonics, sea-level fluctuations, and sedimentation patterns, influencing the development of reservoirs. An understanding of sediment transport and depositional settings is essential for efficient reservoir management. Geomorphological features, such as channels, submarine canyons, and distinct channel types, are essential in this situation. A detailed examination of turbidite channel structures, encompassing canyons, channel complexes, convex channels, and U-shaped channels, provides valuable insights and aids in identifying exploration targets like basal lag, channel levees, and lobes. These findings underscore the enduring significance of turbidite systems as conduits for sediment transport, contributing to enhanced reservoir management and efficient hydrocarbon production. The study also highlights how important it is to examine the configuration of sedimentary layers, stacking patterns, and angular laminated facies to identify turbidites, understand reservoir distribution, and improve well design. The dynamic nature of turbidite systems, influenced by basin characteristics such as shape and slope, is highlighted. The research provides valuable insights essential for successful hydrocarbon exploration, reservoir management, and sustainable resource exploitation in coastal West Africa.展开更多
Petrographic and geochemical studies of syenite-looking Ayetoro and Sasaro plutons within Igarra Schist Belt were carried out in order to classify them and determine their tectonic setting and mineralization potential...Petrographic and geochemical studies of syenite-looking Ayetoro and Sasaro plutons within Igarra Schist Belt were carried out in order to classify them and determine their tectonic setting and mineralization potential. Petrographic study and geochemical classification revealed that while Ayetoro boss is microgranite constituting an aggregate of medium grained muscovite, quartz and biotite minerals, Sasaro stock is micromonzonite made up of medium grained albite, orthoclase, biotite, hornblende and pyroxene. Geotectonic setting showed the boss and stock are orogenic, probably derived from the same upper mantle magma as Igarra batholith that got contaminated by crustal materials responsible for their difference in lithology. Their mineralization potential showed that the massive Ayetoro microgranite with no appreciable trace-element contents cannot serve as host of any metallic deposit, and should be suitable for industrial applications. Whereas, the silicified, highly sheared Sasaro monzonite, with elevated level of some trace elements contents as Ag, Au and Cu, could harbor Ag-Au-Cu deposit.展开更多
Spatio-temporal variability and dynamics in Sahelian agro-pastoral zones make each local situation a special case. These specificities must be considered to guide the dissemination of agricultural options with a view ...Spatio-temporal variability and dynamics in Sahelian agro-pastoral zones make each local situation a special case. These specificities must be considered to guide the dissemination of agricultural options with a view to sustainable development. The territorial scale of municipalities is not sufficient for this necessary contextualization;the scale of the “village terroir” seems to be a better option. This is the hypothesis we put forward in the framework of the Global Collaboration for Resilient Food Systems program (CRFS), i.e. local context is spatially defined by village terroir. The study is based on data collected through participatory mapping and surveys in “village terroirs” in three regions of Niger (Maradi, Dosso and Tillabéri). Then the links between farm managers and their cultivated land, as well as the spatio-temporal dynamics of local context are analyzed. This study provides evidence of the existence and functional usefulness of the village terroir for farmers, their land management and their activities. It demonstrates the usefulness of contextualizing agricultural options at this scale. Their analysis elucidates the links between “terroirs village” and the specific functioning of the agrosocio-ecosystems acting on each of them, thus laying the systemic and geographical foundations for a model of the spatio- temporal dynamics of “village terroirs”. This initial work has opened up new perspectives in modeling and sustainable development.展开更多
In 1995, the Intergovernmental Panel on Climate Change (IPCC) released a thermodynamic model based on the Greenhouse Effect, aiming to forecast global temperatures. This study delves into the intricacies of that model...In 1995, the Intergovernmental Panel on Climate Change (IPCC) released a thermodynamic model based on the Greenhouse Effect, aiming to forecast global temperatures. This study delves into the intricacies of that model. Some interesting observations are revealed. The IPCC model equated average temperatures with average energy fluxes, which can cause significant errors. The model assumed that all energy fluxes remained constant, and the Earth emitted infrared radiation as if it were a blackbody. Neither of those conditions exists. The IPCC’s definition of Climate Change only includes events caused by human actions, excluding most causes. Satellite data aimed at the tops of clouds may have inferred a high Greenhouse Gas absorption flux. The model showed more energy coming from the atmosphere than absorbed from the sun, which may have caused a violation of the First and Second Laws of Thermodynamics. There were unexpectedly large gaps in the satellite data that aligned with various absorption bands of Greenhouse Gases, possibly caused by photon scattering associated with re-emissions. Based on science, we developed a cloud-based climate model that complied with the Radiation Laws and the First and Second Laws of Thermodynamics. The Cloud Model showed that 81.3% of the outgoing reflected and infrared radiation was applicable to the clouds and water vapor. In comparison, the involvement of CO<sub>2</sub> was only 0.04%, making it too minuscule to measure reliably.展开更多
Brazil annually faces significant challenges with mass movements, particularly in areas with poorly constructed housing, inadequate engineering, and lacking sanitation infrastructure. Campos do Jordão, in Sã...Brazil annually faces significant challenges with mass movements, particularly in areas with poorly constructed housing, inadequate engineering, and lacking sanitation infrastructure. Campos do Jordão, in São Paulo state, is a city currently grappling with these issues. This paper details a study conducted within a pilot area in Campos do Jordão, where geophysical surveys and geotechnical borehole data were integrated. The geophysical surveys provided 2D profiles, and samples were collected to analyse soil moisture and plasticity. These datasets were combined using a Cokriging-based model to produce an accurate representation of the subsurface conditions. The enhanced modelling of subsurface variability facilitates a deeper understanding of soil behavior, which can be used to improve landslide risk assessments. This approach is innovative, particularly within the international context where similar studies often do not address the complexities associated with urban planning deficits such as those observed in some areas of Brazil. These conditions, including the lack of proper sanitation and irregular housing, significantly influence the geological stability of the region, adding layers of complexity to subsurface assessments. Adapting geotechnical evaluation methods to local challenges offers the potential to increase the efficacy and relevance of geological risk management in regions with similar socio-economic and urban characteristics.展开更多
This study determines if there is a correlation between rising carbon dioxide levels and global warming. Historical data were reviewed from three different time periods spanning 500 million years. It showed that the c...This study determines if there is a correlation between rising carbon dioxide levels and global warming. Historical data were reviewed from three different time periods spanning 500 million years. It showed that the curves and trends were too dissimilar to establish a connection. Observations from CO<sub>2</sub>/temp ratios showed that the CO<sub>2</sub> and the temperature moved in opposite directions 42% of the time. Many ratios displayed zero or near zero values, reflecting a lack of response. As much as 87% of the ratios revealed negative or near zero values, which strongly negate a correlation. The infrared spectra showed the Greenhouse Gases had an exceptionally low absorption band between 11.67 μm to 9.1 μm, which is a zone called the infrared atmospheric window. Most of the Greenhouse Gases absorb little infrared inside that zone. And that zone is where the Earth’s surface emits almost all infrared radiation. Even with minimal absorbance, water vapor captures the most infrared radiation. It absorbs 84 times more than CO<sub>2</sub>, 407 thousand times more than methane, 452 thousand times more than ozone and 2.3 million times more than nitrous oxide. The Intergovernmental Panel on Climate Change (IPCC) and the United States EPA excluded water vapor because it was not associated with man-made activities. They reported that water vapor and clouds were simply feedback mechanisms from CO<sub>2</sub>. Clouds reflect radiation from the sun. The Northern Hemisphere is 2.7°F warmer than the Southern Hemisphere because of clouds. The world cloud cover has gone down 4.1% from 1982 to 2018. Calculations show that this could be responsible for 2.4°F of the 2.7°F. The research shows that most of the recent increase in temperature (89.9%) is because of fewer clouds.展开更多
Floods are among the worst natural catastrophes, devastating homes, businesses, public buildings, farms, and crops. Studies show that it’s not the flood itself that’s deadly but people’s vulnerability. This study i...Floods are among the worst natural catastrophes, devastating homes, businesses, public buildings, farms, and crops. Studies show that it’s not the flood itself that’s deadly but people’s vulnerability. This study investigates the Ala and Akure-Ofosu flood-prone zones;identifies elements that cause flooding in the study area;classifies each criterion by its effect;develops a flood risk map;estimates flood damage using Sentinel-1A SAR data;compares AHP results. Literature study and GIS-computer database georeferenced fieldwork data. Photos from the 2020 Sentinel 2A satellite have been organized. Built-up area, cropland, rock, the body of water, and forest Land use and cover, slope, rainfall, soil, Euclidean River Distance, and flow accumulation were mapped. These variables were integrated into a Multi-Criteria Analysis (MCA) using GIS tools, resulting in the creation of a flood risk map that categorizes the region into five risk zones: 5% of the area is identified as high-risk, 21% as low-risk, and 74% as moderate-risk. Copernicus SAR data from before and after the flood were processed on Google Earth Engine to map flood extent and ensured that the MCA map accurately reflected flood-prone areas. Periodic review, real-time flood susceptibility monitoring, early warning, and quick damage assessment are suggested to avoid flood danger and other environmental problems.展开更多
Surface mining operations play a crucial role in meeting the world’s increasing demand for mineral resources for the advancement of technology and debauched expansion of economies. The search for and exploitation of ...Surface mining operations play a crucial role in meeting the world’s increasing demand for mineral resources for the advancement of technology and debauched expansion of economies. The search for and exploitation of these mineral resources are therefore important for the sustainability of the mineral extraction industry. To this end, efficient mine planning must incorporate sterilisation drilling and effective waste rock management principles in the search and exploitation of these minerals. In this article, sterilisation drilling is being reviewed vis-a-vis the establishment of waste and tailings dump locations, backfilling of open pit excavations and mine closure giving critical attention to the minerals and mining laws of Ghana. Subsequently, a detailed case study of a surface mining operation that successfully incorporated sterilisation drilling in determining waste dump location in its mine planning process has been presented in this study. The findings indicate that the proposed waste dump location could present a potential mining prospect in the future based on enhanced milling capacity/technology and improved mineral commodity price;underscoring the significance of sterilization drilling in the sustainability of the mining industry.展开更多
The rotation of the Earth and the related length of the day (LOD) are predominantly affected by tidal dissipation through the Moon and the growth of the Earth’s core. Due to the increased concentration of mass around...The rotation of the Earth and the related length of the day (LOD) are predominantly affected by tidal dissipation through the Moon and the growth of the Earth’s core. Due to the increased concentration of mass around the rotation axis of the spinning Earth during the growth of the core the rotation should have been accelerated. Controversially the tidal dissipation by the Moon, which is mainly dependent on the availability of open shallow seas and the kind of Moon escape from a nearby position, acts towards a deceleration of the rotating Earth. Measurements of LOD for Phanerozoic and Precambrian times open ways to solve questions concerning the geodynamical history of the Earth. These measurements encompass investigations of growth patterns in fossils and depositional patterns in sediments (Cyclostratigraphy, Tidalites, Stromatolites, Rhythmites). These patterns contain information on the LOD and on the changing distance between Earth and Moon and can be used as well for a discussion about the growth of the Earth’s core. By updating an older paper with its simple approach as well as incorporating newly published results provided by the geoscientific community, a moderate to fast growth of the core in a hot early Earth will be favored controversially to the assumption of a delayed development of the core in an originally cold Earth. Core development with acceleration of Earth’s rotation and the contemporaneous slowing down due to tidal dissipation during the filling of the ocean may significantly interrelate.展开更多
The “mainstream” climatology (MSC)—i.e. which includes the Intergovernmental Panel on Climate Change (IPCC) community—considers the present day massive release of greenhouse gases into the atmosphere as the main c...The “mainstream” climatology (MSC)—i.e. which includes the Intergovernmental Panel on Climate Change (IPCC) community—considers the present day massive release of greenhouse gases into the atmosphere as the main cause of the current global warming trend. The main inference from this stance is that the increase in temperature must occur after the release of greenhouse gases originating from the anthropic activities. However, no scientific evidence has been provided for this basic notion. Earth paleoclimatic records document the antecedence of temperature over CO<sub>2</sub> levels. For the past 65 Ma, the temperature parameter has controlled the subsequent increase in CO<sub>2</sub>. This includes the three rapid aberrant shifts and extreme climate transients at 55 Ma, 34 Ma, and 23 Ma REF _Ref159913672 \r \h \* MERGEFORMAT [1]. The simple fact of their existence points to the potential for highly nonlinear responses in climate forcing. Whatever these shifts and transients are, CO<sub>2</sub> remains a second order parameter in their evolution through time. Confronted with the past, a suitable response must therefore be given to the unresolved question of whether the CO<sub>2</sub> trends precede the temperature trends in the current period, or not. The assertion that the current global warming is anthropogenic in origin implicitly presupposes a change of paradigm, with the consequence (the increase in CO<sub>2</sub> levels) that occurred in Earth’s past being positioned as the cause of the warming for its present day climatic evolution. The compulsory assumption regarding the antecedence of CO<sub>2</sub> levels over the temperature trends is associated with the haziness of the methodological framework—i.e. the paradigm—and tightens the research fields on the likely origins of global warming. The possible involvement of an “aberrant” natural event, hidden behind the massive release of greenhouse gases, has not been considered by the MSC.展开更多
Selenium is a trace element that can have both beneficial and harmful effects on aquatic life. The Aby Lagoon is a coastal environment in Côte d’Ivoire that receives selenium inputs from various natural and anth...Selenium is a trace element that can have both beneficial and harmful effects on aquatic life. The Aby Lagoon is a coastal environment in Côte d’Ivoire that receives selenium inputs from various natural and anthropogenic sources. The aim of this study was to assess the levels of selenium in the sediments of the Aby Lagoon and its tributaries, the Tanoe River and the Tendo Lagoon, and to examine the spatial and seasonal variations of selenium concentrations. Sediment samples were collected from different sites and seasons, and selenium concentrations were measured by atomic fluorescence spectrometry. The results showed that the average concentration of selenium in the sediments of the Aby Lagoon was 0.82 mg/kg, indicating moderate contamination. The concentration of selenium varied between sites and seasons, with higher values in the channel of the Tendo Lagoon and during the dry season. The study highlighted the complexity of selenium dynamics in aquatic ecosystems, and the need to take into account seasonal and spatial variability as well as interactions between environmental factors. The study also suggested potential ecotoxicological risks for some sensitive organisms in certain areas of the lagoon. This study contributes to the knowledge of the dynamics of selenium in lagoon ecosystems and to the assessment of the environmental risks associated with its presence.展开更多
文摘We chose a definition of heatwaves (HWs) that has ~4-year recurrence frequency at world hot spots. We first examined the 1940-2022 HWs climatology and trends in lifespan, severity, spatial extent, and recurrence frequency. HWs are becoming more frequent and more severe for extratropical mid- and low-latitudes. To euphemize HWs, we here propose a novel clean energy-tapping concept that utilizes the available nano-technology, micro-meteorology knowledge of temperature distribution within/without buildings, and radiative properties of earth atmosphere. The key points for a practical electricity generation scheme from HWs are defogging, insulation, and minimizing the absorption of infrared downward radiation at the cold legs of the thermoelectric generators. One sample realization is presented which, through relay with existing photovoltaic devices, provides all-day electricity supply sufficient for providing air conditioning requirement for a residence (~2000-watt throughput). The provision of power to air conditioning systems, usually imposes a significant stress on traditional city power grids during heatwaves.
文摘The Douta permit of African Star Resources/Thor Explorations, located in the southeast of Senegal, in the Kédougou-Kéniéba Inlier (western part of the West African Craton), is dominated to the East by metasedimentary formations such as greywackes, shales, graphitic shales, quartzites, cherts, claystones and breccias characteristic of the Dialé-Daléma basin. To the West, the mafic formations of the Mako volcanic belt are the most common. Metasedimentary rocks are associated with metavolcanosedimentary terms found at the contact zones between the two (2) Birimian groups. These different geological formations are cut by mafic dolerite and gabbro sills and/or dykes, as well as quartz and microgranite veins. The Douta gold project is crossed from North to South by the MTZ (Main Transcurrent Zone), generally oriented NE-SW and becoming N-S towards the North. The permit is characterized by several shear corridors. The rocks are affected by brittle, brittle-ductile to ductile deformations. The gold mineralization is hosted by a NE-trending shear corridor called the Makosa corridor (Makosa shear zone), therefore sub-parallel to the MTZ. It has a subvertical dip (75˚ to 85˚ to the NW). It is associated with a hydrothermal phase characterized by quartz-sericite-epidote-fine, disseminated pyrite and arsenopyrite ± albite ± chlorite paragenesis. These minerals testify to the existence of a low degree of metamorphism (greenschist facies, epizonal domain) in the area. However, metamorphism reaches amphibolite facies in some places, particularly in the vicinity of intrusive bodies, with the presence of hornblende (amphiboles) and plagioclase. The gold mineralization is mainly hosted by two (2) metasedimentary lithological units: meta-greywackes and shales.
文摘Around 71% of the Earth’s surface is covered by oceans with depths that exceed several kilometers, while continents are geographically enclosed by these vast bodies of water. The principle of fluid mechanics stipulates that water yields pressure everywhere in the container that holds it, and the water pressure against the wall of container generates force. Ocean basins are naturally gigantic containers of water, in which continents form the walls of the containers. In this study, we present that the ocean water pressure against the walls of continents generates enormous force, and determine the distribution of this force around continents and estimate its amplitude to be of the order of 1017 N per kilometer of continent width. Our modelling suggests that the stresses yielded by this force are mostly concentrated on the upper part of the continental crust, and their magnitudes reach up to 2.0 - 6.0 MPa. Our results suggest that the force may have significantly impacted the dynamics of continent (lithospheric plate) and its evolution.
文摘The Roaches Grit in the UK Pennine Basin was a complex deep water deltaic sequence deposited during the Late Carboniferous glacial period. The channels of the upper part of the Roaches Grit, deposited towards the end of the cyclothem after the eustatic minimum, contain evidence for very high seasonal discharges related to strong monsoon rainfall in the catchment areas. In some channels, intense turbulence near the delta front, led to knick point recession and deep incision. These channels were filled with sediments during reduced discharge, including very large sets of cross-bedding up to 16 m thick. Channels were short-lived with frequent avulsions. Over time slightly lower discharges formed laterally migrating channels dominated by bar forms. Different discharge-controlled processes operated on the reactivated delta slope. Incised channels generated turbidity currents during floods which transported sediments directly into the basin far from the delta. Migrating channels built mouth bars;resedimentation during floods formed density currents which then deposited sediment on the lower parts of the slope.
文摘South of Godé, in the central-western region of Burkina Faso, granitoids of Paleoproterozoic age are similar to those of the Man/Leo shield. This study focused on the petrographic and geochemical characteristics of these granitoids, with the following results: 1) The tonalite that outcrops in the south-west of the study area belongs to the TTG group or first generation granitoids. They are most often ribboned at outcrop and have a geochemical signature close to that of Archean TTGs. Tonalite has a metaluminous character and the REE spectrum indicates that it may be derived from partial melting of basic magmatic rocks. 2) Biotite granites have no outcrop structure. They are weakly metaluminous to peraluminous and potassic to highly potassic. Their rare earth spectra indicate that they may be derived from the partial melting of TTG granitoids. 3) Geotectonic diagrams show that the granitoids studied to the south of Godé were emplaced in an active tectonic context similar to that of present-day subduction zones.
文摘The Banfora’s birimian greenstones belt is located in the western part of Burkina Faso (west Africa). Recent petrographic and lithogeochemical studies have highlighted plutons intruding the metasedimentary and metavolcanic series. These plutonic rocks are composed of leucogranites belonging to the so-called Ferkessedougou’s or Ferké’s batholith, granites, granodiorites, monzodiorites and quartz monzonites. From the lithogeochemical studies, these plutonic rocks have a calc-alkaline and peraluminous character. The rare earth elements spectra of the Ferké’s leucogranites let distinguished two sub-facies. One of the sub-facies is composed of quartz monzonite to granite, while the other is granitic sensu stricto. However, all these plutonic rocks were emplaced in a geodynamic context of subduction followed by collision.
文摘The amber deposits from the Albian-Cenomanian in Myanmar have emerged as a pivotal source for exceptionally abundant fossil insect fauna since their initial discovery. Recent studies have increasingly focused on elucidating the fern inventory and examining newly available fossils from Myanmar amber, suggesting a diverse fern flora that once thrived in Cretaceous forests. Through investigations of amber collections, with particular emphasis on sporangium structures—especially the annulus types preserved in amber inclusions—this study revealed additional novelties within the Cyatheales and Schizaeales in mid-Cretaceous Myanmar amber forests. The described specimens and newly discovered fossils provide compelling evidence that Polypodiales were not only diverse and abundant but also that other fern lineages, such as Cyatheales and Schizaeales, coexisted in these ancient forest ecosystems. This study reveals the high diversity of ferns in the mid-Cretaceous Myanmar area, while also implying the paleoecological and paleogeographical significance of the Mesozoic Burmese amber forests.
文摘The present study, carried out in the forest (Daloa) and pre-forest (M’Bahiakro) zones of Cote d’Ivoire, aims to determine soil landscape units using the coding method. Geological maps and satellite images (SRTM and Landsat) were used for this purpose. The methodological approach adopted consisted in producing maps of slope, geology, land use and topography using the codification method. These various maps, integrated into a GIS using the coding aggregation method, were used to generate soil landscape maps. Twenty-seven (27) soil landscapes have been identified for the pre-forest zone (M’Bahiakro), with a strong dominance of acid rock over a moderate relief under savannah, forest/degraded forest and crops/fallow. However, the forest zone (Daloa), with forty-one (41) soil landscapes identified over the entire zone, is characterized by a majority of mafic rocks on a medium altitude under forest/degraded forest, water and crops/fallow. The criteria used from the codification method (sum of aggregations) made it possible to predict the spatial distribution of soil map units according to agro-ecological environments in the humid intertropical zone. This is essential for the orientation and reinforcement of soil survey tools. However, a comparative evaluation of the different multicriteria analysis methods for coding and weighting soil landscape unit mapping would enable us to identify the most suitable and efficient method for drawing up base maps for soil surveys.
文摘This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.
文摘This study examines the turbidite dynamics and hydrocarbon reservoir formation in Ghana’s Tano Basin, which is located in coastal West Africa. Through an exploration of geological processes spanning millions of years, we uncover key factors shaping hydrocarbon accumulation, including source rock richness, temperature, pressure, and geological structures. The research offers valuable insights applicable to exploration, management, and sustainable resource exploitation in coastal West Africa. It facilitates the identification of exploration targets with higher hydrocarbon potential, enables the anticipation of reservoir potential within the Tano Basin, and assists in tailoring exploration and management strategies to specific geological conditions of the Tano Basin. Analysis of fluvial channels sheds light on their impact on landscape formation and hydrocarbon exploration. The investigation into turbidite systems unveils intricate interactions involving tectonics, sea-level fluctuations, and sedimentation patterns, influencing the development of reservoirs. An understanding of sediment transport and depositional settings is essential for efficient reservoir management. Geomorphological features, such as channels, submarine canyons, and distinct channel types, are essential in this situation. A detailed examination of turbidite channel structures, encompassing canyons, channel complexes, convex channels, and U-shaped channels, provides valuable insights and aids in identifying exploration targets like basal lag, channel levees, and lobes. These findings underscore the enduring significance of turbidite systems as conduits for sediment transport, contributing to enhanced reservoir management and efficient hydrocarbon production. The study also highlights how important it is to examine the configuration of sedimentary layers, stacking patterns, and angular laminated facies to identify turbidites, understand reservoir distribution, and improve well design. The dynamic nature of turbidite systems, influenced by basin characteristics such as shape and slope, is highlighted. The research provides valuable insights essential for successful hydrocarbon exploration, reservoir management, and sustainable resource exploitation in coastal West Africa.
文摘Petrographic and geochemical studies of syenite-looking Ayetoro and Sasaro plutons within Igarra Schist Belt were carried out in order to classify them and determine their tectonic setting and mineralization potential. Petrographic study and geochemical classification revealed that while Ayetoro boss is microgranite constituting an aggregate of medium grained muscovite, quartz and biotite minerals, Sasaro stock is micromonzonite made up of medium grained albite, orthoclase, biotite, hornblende and pyroxene. Geotectonic setting showed the boss and stock are orogenic, probably derived from the same upper mantle magma as Igarra batholith that got contaminated by crustal materials responsible for their difference in lithology. Their mineralization potential showed that the massive Ayetoro microgranite with no appreciable trace-element contents cannot serve as host of any metallic deposit, and should be suitable for industrial applications. Whereas, the silicified, highly sheared Sasaro monzonite, with elevated level of some trace elements contents as Ag, Au and Cu, could harbor Ag-Au-Cu deposit.
文摘Spatio-temporal variability and dynamics in Sahelian agro-pastoral zones make each local situation a special case. These specificities must be considered to guide the dissemination of agricultural options with a view to sustainable development. The territorial scale of municipalities is not sufficient for this necessary contextualization;the scale of the “village terroir” seems to be a better option. This is the hypothesis we put forward in the framework of the Global Collaboration for Resilient Food Systems program (CRFS), i.e. local context is spatially defined by village terroir. The study is based on data collected through participatory mapping and surveys in “village terroirs” in three regions of Niger (Maradi, Dosso and Tillabéri). Then the links between farm managers and their cultivated land, as well as the spatio-temporal dynamics of local context are analyzed. This study provides evidence of the existence and functional usefulness of the village terroir for farmers, their land management and their activities. It demonstrates the usefulness of contextualizing agricultural options at this scale. Their analysis elucidates the links between “terroirs village” and the specific functioning of the agrosocio-ecosystems acting on each of them, thus laying the systemic and geographical foundations for a model of the spatio- temporal dynamics of “village terroirs”. This initial work has opened up new perspectives in modeling and sustainable development.
文摘In 1995, the Intergovernmental Panel on Climate Change (IPCC) released a thermodynamic model based on the Greenhouse Effect, aiming to forecast global temperatures. This study delves into the intricacies of that model. Some interesting observations are revealed. The IPCC model equated average temperatures with average energy fluxes, which can cause significant errors. The model assumed that all energy fluxes remained constant, and the Earth emitted infrared radiation as if it were a blackbody. Neither of those conditions exists. The IPCC’s definition of Climate Change only includes events caused by human actions, excluding most causes. Satellite data aimed at the tops of clouds may have inferred a high Greenhouse Gas absorption flux. The model showed more energy coming from the atmosphere than absorbed from the sun, which may have caused a violation of the First and Second Laws of Thermodynamics. There were unexpectedly large gaps in the satellite data that aligned with various absorption bands of Greenhouse Gases, possibly caused by photon scattering associated with re-emissions. Based on science, we developed a cloud-based climate model that complied with the Radiation Laws and the First and Second Laws of Thermodynamics. The Cloud Model showed that 81.3% of the outgoing reflected and infrared radiation was applicable to the clouds and water vapor. In comparison, the involvement of CO<sub>2</sub> was only 0.04%, making it too minuscule to measure reliably.
文摘Brazil annually faces significant challenges with mass movements, particularly in areas with poorly constructed housing, inadequate engineering, and lacking sanitation infrastructure. Campos do Jordão, in São Paulo state, is a city currently grappling with these issues. This paper details a study conducted within a pilot area in Campos do Jordão, where geophysical surveys and geotechnical borehole data were integrated. The geophysical surveys provided 2D profiles, and samples were collected to analyse soil moisture and plasticity. These datasets were combined using a Cokriging-based model to produce an accurate representation of the subsurface conditions. The enhanced modelling of subsurface variability facilitates a deeper understanding of soil behavior, which can be used to improve landslide risk assessments. This approach is innovative, particularly within the international context where similar studies often do not address the complexities associated with urban planning deficits such as those observed in some areas of Brazil. These conditions, including the lack of proper sanitation and irregular housing, significantly influence the geological stability of the region, adding layers of complexity to subsurface assessments. Adapting geotechnical evaluation methods to local challenges offers the potential to increase the efficacy and relevance of geological risk management in regions with similar socio-economic and urban characteristics.
文摘This study determines if there is a correlation between rising carbon dioxide levels and global warming. Historical data were reviewed from three different time periods spanning 500 million years. It showed that the curves and trends were too dissimilar to establish a connection. Observations from CO<sub>2</sub>/temp ratios showed that the CO<sub>2</sub> and the temperature moved in opposite directions 42% of the time. Many ratios displayed zero or near zero values, reflecting a lack of response. As much as 87% of the ratios revealed negative or near zero values, which strongly negate a correlation. The infrared spectra showed the Greenhouse Gases had an exceptionally low absorption band between 11.67 μm to 9.1 μm, which is a zone called the infrared atmospheric window. Most of the Greenhouse Gases absorb little infrared inside that zone. And that zone is where the Earth’s surface emits almost all infrared radiation. Even with minimal absorbance, water vapor captures the most infrared radiation. It absorbs 84 times more than CO<sub>2</sub>, 407 thousand times more than methane, 452 thousand times more than ozone and 2.3 million times more than nitrous oxide. The Intergovernmental Panel on Climate Change (IPCC) and the United States EPA excluded water vapor because it was not associated with man-made activities. They reported that water vapor and clouds were simply feedback mechanisms from CO<sub>2</sub>. Clouds reflect radiation from the sun. The Northern Hemisphere is 2.7°F warmer than the Southern Hemisphere because of clouds. The world cloud cover has gone down 4.1% from 1982 to 2018. Calculations show that this could be responsible for 2.4°F of the 2.7°F. The research shows that most of the recent increase in temperature (89.9%) is because of fewer clouds.
文摘Floods are among the worst natural catastrophes, devastating homes, businesses, public buildings, farms, and crops. Studies show that it’s not the flood itself that’s deadly but people’s vulnerability. This study investigates the Ala and Akure-Ofosu flood-prone zones;identifies elements that cause flooding in the study area;classifies each criterion by its effect;develops a flood risk map;estimates flood damage using Sentinel-1A SAR data;compares AHP results. Literature study and GIS-computer database georeferenced fieldwork data. Photos from the 2020 Sentinel 2A satellite have been organized. Built-up area, cropland, rock, the body of water, and forest Land use and cover, slope, rainfall, soil, Euclidean River Distance, and flow accumulation were mapped. These variables were integrated into a Multi-Criteria Analysis (MCA) using GIS tools, resulting in the creation of a flood risk map that categorizes the region into five risk zones: 5% of the area is identified as high-risk, 21% as low-risk, and 74% as moderate-risk. Copernicus SAR data from before and after the flood were processed on Google Earth Engine to map flood extent and ensured that the MCA map accurately reflected flood-prone areas. Periodic review, real-time flood susceptibility monitoring, early warning, and quick damage assessment are suggested to avoid flood danger and other environmental problems.
文摘Surface mining operations play a crucial role in meeting the world’s increasing demand for mineral resources for the advancement of technology and debauched expansion of economies. The search for and exploitation of these mineral resources are therefore important for the sustainability of the mineral extraction industry. To this end, efficient mine planning must incorporate sterilisation drilling and effective waste rock management principles in the search and exploitation of these minerals. In this article, sterilisation drilling is being reviewed vis-a-vis the establishment of waste and tailings dump locations, backfilling of open pit excavations and mine closure giving critical attention to the minerals and mining laws of Ghana. Subsequently, a detailed case study of a surface mining operation that successfully incorporated sterilisation drilling in determining waste dump location in its mine planning process has been presented in this study. The findings indicate that the proposed waste dump location could present a potential mining prospect in the future based on enhanced milling capacity/technology and improved mineral commodity price;underscoring the significance of sterilization drilling in the sustainability of the mining industry.
文摘The rotation of the Earth and the related length of the day (LOD) are predominantly affected by tidal dissipation through the Moon and the growth of the Earth’s core. Due to the increased concentration of mass around the rotation axis of the spinning Earth during the growth of the core the rotation should have been accelerated. Controversially the tidal dissipation by the Moon, which is mainly dependent on the availability of open shallow seas and the kind of Moon escape from a nearby position, acts towards a deceleration of the rotating Earth. Measurements of LOD for Phanerozoic and Precambrian times open ways to solve questions concerning the geodynamical history of the Earth. These measurements encompass investigations of growth patterns in fossils and depositional patterns in sediments (Cyclostratigraphy, Tidalites, Stromatolites, Rhythmites). These patterns contain information on the LOD and on the changing distance between Earth and Moon and can be used as well for a discussion about the growth of the Earth’s core. By updating an older paper with its simple approach as well as incorporating newly published results provided by the geoscientific community, a moderate to fast growth of the core in a hot early Earth will be favored controversially to the assumption of a delayed development of the core in an originally cold Earth. Core development with acceleration of Earth’s rotation and the contemporaneous slowing down due to tidal dissipation during the filling of the ocean may significantly interrelate.
文摘The “mainstream” climatology (MSC)—i.e. which includes the Intergovernmental Panel on Climate Change (IPCC) community—considers the present day massive release of greenhouse gases into the atmosphere as the main cause of the current global warming trend. The main inference from this stance is that the increase in temperature must occur after the release of greenhouse gases originating from the anthropic activities. However, no scientific evidence has been provided for this basic notion. Earth paleoclimatic records document the antecedence of temperature over CO<sub>2</sub> levels. For the past 65 Ma, the temperature parameter has controlled the subsequent increase in CO<sub>2</sub>. This includes the three rapid aberrant shifts and extreme climate transients at 55 Ma, 34 Ma, and 23 Ma REF _Ref159913672 \r \h \* MERGEFORMAT [1]. The simple fact of their existence points to the potential for highly nonlinear responses in climate forcing. Whatever these shifts and transients are, CO<sub>2</sub> remains a second order parameter in their evolution through time. Confronted with the past, a suitable response must therefore be given to the unresolved question of whether the CO<sub>2</sub> trends precede the temperature trends in the current period, or not. The assertion that the current global warming is anthropogenic in origin implicitly presupposes a change of paradigm, with the consequence (the increase in CO<sub>2</sub> levels) that occurred in Earth’s past being positioned as the cause of the warming for its present day climatic evolution. The compulsory assumption regarding the antecedence of CO<sub>2</sub> levels over the temperature trends is associated with the haziness of the methodological framework—i.e. the paradigm—and tightens the research fields on the likely origins of global warming. The possible involvement of an “aberrant” natural event, hidden behind the massive release of greenhouse gases, has not been considered by the MSC.
文摘Selenium is a trace element that can have both beneficial and harmful effects on aquatic life. The Aby Lagoon is a coastal environment in Côte d’Ivoire that receives selenium inputs from various natural and anthropogenic sources. The aim of this study was to assess the levels of selenium in the sediments of the Aby Lagoon and its tributaries, the Tanoe River and the Tendo Lagoon, and to examine the spatial and seasonal variations of selenium concentrations. Sediment samples were collected from different sites and seasons, and selenium concentrations were measured by atomic fluorescence spectrometry. The results showed that the average concentration of selenium in the sediments of the Aby Lagoon was 0.82 mg/kg, indicating moderate contamination. The concentration of selenium varied between sites and seasons, with higher values in the channel of the Tendo Lagoon and during the dry season. The study highlighted the complexity of selenium dynamics in aquatic ecosystems, and the need to take into account seasonal and spatial variability as well as interactions between environmental factors. The study also suggested potential ecotoxicological risks for some sensitive organisms in certain areas of the lagoon. This study contributes to the knowledge of the dynamics of selenium in lagoon ecosystems and to the assessment of the environmental risks associated with its presence.