期刊文献+

为您找到了以下期刊:

共找到934篇文章
< 1 2 47 >
每页显示 20 50 100
Current perspectives on mesenchymal stem cells as a potential therapeutic strategy for non-alcoholic fatty liver disease 被引量:4
1
作者 Yan Jiang Narazah Mohd Yusoff +2 位作者 Jiang Du Emmanuel Jairaj Moses Jun-Tang Lin world journal of stem cells SCIE 2024年第7期760-772,共13页
Non-alcoholic fatty liver disease(NAFLD)has emerged as a significant health challenge,characterized by its widespread prevalence,intricate natural progression and multifaceted pathogenesis.Although NAFLD initially pre... Non-alcoholic fatty liver disease(NAFLD)has emerged as a significant health challenge,characterized by its widespread prevalence,intricate natural progression and multifaceted pathogenesis.Although NAFLD initially presents as benign fat accumulation,it may progress to steatosis,non-alcoholic steatohepatitis,cirrhosis,and hepatocellular carcinoma.Mesenchymal stem cells(MSCs)are recognized for their intrinsic self-renewal,superior biocompatibility,and minimal immunogenicity,positioning them as a therapeutic innovation for liver diseases.Therefore,this review aims to elucidate the potential roles of MSCs in alleviating the progression of NAFLD by alteration of underlying molecular pathways,including glycolipid metabolism,inflammation,oxidative stress,endoplasmic reticulum stress,and fibrosis.The insights are expected to provide further understanding of the potential of MSCs in NAFLD therapeutics,and support the development of MSC-based therapy in the treatment of NAFLD. 展开更多
关键词 Non-alcoholic induced fatty liver disease Mesenchymal stem cells Lipid accumulation INFLAMMATION Oxidative stress Endoplasmic reticulum stress FIBROSIS
下载PDF
Cellular preconditioning and mesenchymal stem cell ferroptosis 被引量:4
2
作者 Doaa Hussein Zineldeen Mazhar Mushtaq Khawaja Husnain Haider world journal of stem cells SCIE 2024年第2期64-69,共6页
In this editorial,we comment on the article published in the recent issue of the World Journal of Stem Cells.They focus on stem cell preconditioning to prevent ferroptosis by modulating the cystathionineγ-lyase/hydro... In this editorial,we comment on the article published in the recent issue of the World Journal of Stem Cells.They focus on stem cell preconditioning to prevent ferroptosis by modulating the cystathionineγ-lyase/hydrogen sulfide(H_(2)S)pathway as a novel approach to treat vascular disorders,particularly pulmonary hypertension.Preconditioned stem cells are gaining popularity in regenerative medicine due to their unique ability to survive by resisting the harsh,unfavorable microenvironment of the injured tissue.They also secrete various paracrine factors against apoptosis,necrosis,and ferroptosis to enhance cell survival.Ferroptosis,a regulated form of cell death characterized by iron accumulation and oxidative stress,has been implicated in various pathologies encompassing dege-nerative disorders to cancer.The lipid peroxidation cascade initiates and sustains ferroptosis,generating many reactive oxygen species that attack and damage multiple cellular structures.Understanding these intertwined mechanisms provi-des significant insights into developing therapeutic modalities for ferroptosis-related diseases.This editorial primarily discusses stem cell preconditioning in modulating ferroptosis,focusing on the cystathionase gamma/H_(2)S ferroptosis pathway.Ferroptosis presents a significant challenge in mesenchymal stem cell(MSC)-based therapies;hence,the emerging role of H_(2)S/cystathionase gamma/H_(2) S signaling in abrogating ferroptosis provides a novel option for therapeutic intervention.Further research into understanding the precise mechanisms of H_(2)S-mediated cytoprotection against ferroptosis is warranted to enhance the thera-peutic potential of MSCs in clinical settings,particularly vascular disorders. 展开更多
关键词 Cell survival Cell therapy Hydrogen sulfide Ferroptosis PRECONDITIONING Stem cells Umbilical cord
下载PDF
Crosstalk between Wnt and bone morphogenetic protein signaling during osteogenic differentiati 被引量:3
3
作者 Pakkath Narayanan Arya Iyyappan Saranya Nagarajan Selvamurugan world journal of stem cells SCIE 2024年第2期102-113,共12页
Mesenchymal stem cells(MSCs)originate from many sources,including the bone marrow and adipose tissue,and differentiate into various cell types,such as osteoblasts and adipocytes.Recent studies on MSCs have revealed th... Mesenchymal stem cells(MSCs)originate from many sources,including the bone marrow and adipose tissue,and differentiate into various cell types,such as osteoblasts and adipocytes.Recent studies on MSCs have revealed that many transcription factors and signaling pathways control osteogenic development.Osteogenesis is the process by which new bones are formed;it also aids in bone remodeling.Wnt/β-catenin and bone morphogenetic protein(BMP)signaling pathways are involved in many cellular processes and considered to be essential for life.Wnt/β-catenin and BMPs are important for bone formation in mammalian development and various regulatory activities in the body.Recent studies have indicated that these two signaling pathways contribute to osteogenic differen-tiation.Active Wnt signaling pathway promotes osteogenesis by activating the downstream targets of the BMP signaling pathway.Here,we briefly review the molecular processes underlying the crosstalk between these two pathways and explain their participation in osteogenic differentiation,emphasizing the canonical pathways.This review also discusses the crosstalk mechanisms of Wnt/BMP signaling with Notch-and extracellular-regulated kinases in osteogenic differentiation and bone development. 展开更多
关键词 BONE Mesenchymal stem cells Osteogenic differentiation WNT/Β-CATENIN Bone morphogenetic proteins
下载PDF
How mesenchymal stem cells transform into adipocytes:Overview of the current understanding of adipogenic differentiation 被引量:2
4
作者 Shan-Shan Liu Xiang Fang +5 位作者 Xin Wen Ji-Shan Liu Miribangvl Alip Tian Sun Yuan-Yuan Wang Hong-Wei Chen world journal of stem cells SCIE 2024年第3期245-256,共12页
Mesenchymal stem cells(MSCs)are stem/progenitor cells capable of self-renewal and differentiation into osteoblasts,chondrocytes and adipocytes.The transformation of multipotent MSCs to adipocytes mainly involves two s... Mesenchymal stem cells(MSCs)are stem/progenitor cells capable of self-renewal and differentiation into osteoblasts,chondrocytes and adipocytes.The transformation of multipotent MSCs to adipocytes mainly involves two subsequent steps from MSCs to preadipocytes and further preadipocytes into adipocytes,in which the process MSCs are precisely controlled to commit to the adipogenic lineage and then mature into adipocytes.Previous studies have shown that the master transcription factors C/enhancer-binding protein alpha and peroxisome proliferation activator receptor gamma play vital roles in adipogenesis.However,the mechanism underlying the adipogenic differentiation of MSCs is not fully understood.Here,the current knowledge of adipogenic differentiation in MSCs is reviewed,focusing on signaling pathways,noncoding RNAs and epigenetic effects on DNA methylation and acetylation during MSC differentiation.Finally,the relationship between maladipogenic differentiation and diseases is briefly discussed.We hope that this review can broaden and deepen our understanding of how MSCs turn into adipocytes. 展开更多
关键词 Mesenchymal stem cell Adipogenic differentiation Signaling pathway Noncoding RNA Epigenetic regulation
下载PDF
Effects of exosomes from mesenchymal stem cells on functional recovery of a patient with total radial nerve injury: A pilot study 被引量:2
5
作者 ErdinçCivelek Serdar Kabatas +4 位作者 Eyüp Can Savrunlu Furkan Diren Necati Kaplan Demet Ofluoğlu Erdal Karaöz world journal of stem cells SCIE 2024年第1期19-32,共14页
BACKGROUND Peripheral nerve injury can result in significant clinical complications that have uncertain prognoses.Currently,there is a lack of effective pharmacological interventions for nerve damage,despite the exist... BACKGROUND Peripheral nerve injury can result in significant clinical complications that have uncertain prognoses.Currently,there is a lack of effective pharmacological interventions for nerve damage,despite the existence of several small compounds,Despite the objective of achieving full functional restoration by surgical intervention,the persistent challenge of inadequate functional recovery remains a significant concern in the context of peripheral nerve injuries.AIM To examine the impact of exosomes on the process of functional recovery following a complete radial nerve damage.METHODS A male individual,aged 24,who is right-hand dominant and an immigrant,arrived with an injury caused by a knife assault.The cut is located on the left arm,specifically below the elbow.The neurological examination and electrodiagnostic testing reveal evidence of left radial nerve damage.The sural autograft was utilized for repair,followed by the application of 1 mL of mesenchymal stem cell-derived exosome,comprising 5 billion microvesicles.This exosome was split into four equal volumes of 0.25 mL each and delivered microsurgically to both the proximal and distal stumps using the subepineural pathway.The patient was subjected to a period of 180 d during which they had neurological examination and electrodiagnostic testing.RESULTS The duration of the patient’s follow-up period was 180 d.An increasing Tinel’s sign and sensory-motor recovery were detected even at the 10th wk following nerve grafting.Upon the conclusion of the 6-mo post-treatment period,an evaluation was conducted to measure the extent of improvement in motor and sensory functions of the nerve.This assessment was based on the British Medical Research Council scale and the Mackinnon-Dellon scale.The results indicated that the level of improvement in motor function was classified as M5,denoting an excellent outcome.Additionally,the level of improvement in sensory function was classified as S3+,indicating a good outcome.It is noteworthy that these assessments were conducted in the absence of physical therapy.At the 10th wk post-injury,despite the persistence of substantial axonal damage,the nerve exhibited indications of nerve re-innervation as evidenced by control electromyography(EMG).In contrast to the preceding.EMG analysis revealed a significant electrophysiological enhancement in the EMG conducted at the 6th-mo follow-up,indicating ongoing regeneration.CONCLUSION Enhanced comprehension of the neurobiological ramifications associated with peripheral nerve damage,as well as the experimental and therapy approaches delineated in this investigation,holds the potential to catalyze future clinical progress. 展开更多
关键词 Mesenchymal stem cell EXOSOMES Radial nerve Sural nerve
下载PDF
Multiple pretreatments can effectively improve the functionality of mesenchymal stem cells 被引量:2
6
作者 Xin-Xing Wan Xi-Min Hu Kun Xiong world journal of stem cells SCIE 2024年第2期58-63,共6页
In this editorial,we offer our perspective on the groundbreaking study entitled“Hypoxia and inflammatory factor preconditioning enhances the immunosup-pressive properties of human umbilical cord mesenchymal stem cell... In this editorial,we offer our perspective on the groundbreaking study entitled“Hypoxia and inflammatory factor preconditioning enhances the immunosup-pressive properties of human umbilical cord mesenchymal stem cells”,recently published in World Journal of Stem Cells.Despite over three decades of research on the clinical application of mesenchymal stem cells(MSCs),only a few therapeutic products have made it to clinical use,due to multiple preclinical and clinical challenges yet to be addressed.The study proved the hypoxia and inflammatory factor preconditioning led to higher immunosuppressive effects of MSCs without damaging their biological characteristics,which revealed the combination of inflammatory factors and hypoxic preconditioning offers a promising approach to enhance the function of MSCs.As we delve deeper into the intricacies of pretreat-ment methodologies,we anticipate a transformative shift in the landscape of MSC-based therapies,ultimately contributing to improved patient outcomes and advancing the field as a whole. 展开更多
关键词 Mesenchymal stem cells Inflammatory factor HYPOXIA PRETREATMENT
下载PDF
High quality repair of osteochondral defects in rats using the extracellular matrix of antler stem cells 被引量:1
7
作者 Yu-Su Wang Wen-Hui Chu +4 位作者 Jing-Jie Zhai Wen-Ying Wang Zhong-Mei He Quan-Min Zhao Chun-Yi Li world journal of stem cells SCIE 2024年第2期176-190,共15页
BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown... BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown that decellularized extracellular matrix(ECM)derived from autologous,allogenic,or xenogeneic mesenchymal stromal cells(MSCs)can effectively restore osteochondral integrity.AIM To determine whether the decellularized ECM of antler reserve mesenchymal cells(RMCs),a xenogeneic material from antler stem cells,is superior to the currently available treatments for osteochondral defects.METHODS We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70%confluence;50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition.Decellularized sheets of adipocyte-derived MSCs(aMSCs)and antlerogenic periosteal cells(another type of antler stem cells)were used as the controls.Three weeks after ascorbic acid stimulation,the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints.RESULTS The defects were successfully repaired by applying the ECM-sheets.The highest quality of repair was achieved in the RMC-ECM group both in vitro(including cell attachment and proliferation),and in vivo(including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues).Notably,the antler-stem-cell-derived ECM(xenogeneic)performed better than the aMSC-ECM(allogenic),while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells.CONCLUSION Decellularized xenogeneic ECM derived from the antler stem cell,particularly the active form(RMC-ECM),can achieve high quality repair/reconstruction of osteochondral defects,suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship. 展开更多
关键词 Osteochondral defect repair Mesenchymal stem cells Extracellular matrix DECELLULARIZATION Antler stem cells Reserve mesenchymal cells Xenogeneic
下载PDF
Adipose-derived regenerative therapies for the treatment of knee osteoarthritis 被引量:1
8
作者 Ilias E Epanomeritakis Wasim S Khan world journal of stem cells SCIE 2024年第4期324-333,共10页
Knee osteoarthritis is a degenerative condition with a significant disease burden and no disease-modifying therapy.Definitive treatment ultimately requires joint replacement.Therapies capable of regenerating cartilage... Knee osteoarthritis is a degenerative condition with a significant disease burden and no disease-modifying therapy.Definitive treatment ultimately requires joint replacement.Therapies capable of regenerating cartilage could significantly reduce financial and clinical costs.The regenerative potential of mesenchymal stromal cells(MSCs)has been extensively studied in the context of knee osteoarthritis.This has yielded promising results in human studies,and is likely a product of immunomodulatory and chondroprotective biomolecules produced by MSCs in response to inflammation.Adipose-derived MSCs(ASCs)are becoming increasingly popular owing to their relative ease of isolation and high proliferative capacity.Stromal vascular fraction(SVF)and micro-fragmented adipose tissue(MFAT)are produced by the enzymatic and mechanical disruption of adipose tissue,respectively.This avoids expansion of isolated ASCs ex vivo and their composition of heterogeneous cell populations,including immune cells,may potentiate the reparative function of ASCs.In this editorial,we comment on a multicenter randomized trial regarding the efficacy of MFAT in treating knee osteoarthritis.We discuss the study’s findings in the context of emerging evidence regarding adipose-derived regenerative therapies.An underlying mechanism of action of ASCs is proposed while drawing important distinctions between the properties of isolated ASCs,SVF,and MFAT. 展开更多
关键词 Knee osteoarthritis Mesenchymal stromal cells Adipose tissue Stromal vascular fraction Micro-fragmented adipose tissue Regeneration
下载PDF
Priming mesenchymal stem cells to develop “super stem cells” 被引量:1
9
作者 Khawaja Husnain Haider world journal of stem cells SCIE 2024年第6期623-640,共18页
The stem cell pre-treatment approaches at cellular and sub-cellular levels encompass physical manipulation of stem cells to growth factor treatment,genetic manipulation,and chemical and pharmacological treatment,each ... The stem cell pre-treatment approaches at cellular and sub-cellular levels encompass physical manipulation of stem cells to growth factor treatment,genetic manipulation,and chemical and pharmacological treatment,each strategy having advantages and limitations.Most of these pre-treatment protocols are non-combinative.This editorial is a continuum of Li et al’s published article and Wan et al’s editorial focusing on the significance of pre-treatment strategies to enhance their stemness,immunoregulatory,and immunosuppressive properties.They have elaborated on the intricacies of the combinative pre-treatment protocol using pro-inflammatory cytokines and hypoxia.Applying a well-defined multi-pronged combinatorial strategy of mesenchymal stem cells(MSCs),pre-treatment based on the mechanistic understanding is expected to develop“Super MSCs”,which will create a transformative shift in MSC-based therapies in clinical settings,potentially revolutionizing the field.Once optimized,the standardized protocols may be used with slight modifications to pre-treat different stem cells to develop“super stem cells”with augmented stemness,functionality,and reparability for diverse clinical applications with better outcomes. 展开更多
关键词 Cell survival Cell therapy PRECONDITIONING Pre-treatment Stem cells Super stem cells
下载PDF
Mesenchymal stem cells’“garbage bags”at work:Treating radial nerve injury with mesenchymal stem cell-derived exosomes 被引量:1
10
作者 Mazhar Mushtaq Doaa Hussein Zineldeen +1 位作者 Muhammad Abdul Mateen Khawaja Husnain Haider world journal of stem cells SCIE 2024年第5期467-478,共12页
Unlike central nervous system injuries,peripheral nerve injuries(PNIs)are often characterized by more or less successful axonal regeneration.However,structural and functional recovery is a senile process involving mul... Unlike central nervous system injuries,peripheral nerve injuries(PNIs)are often characterized by more or less successful axonal regeneration.However,structural and functional recovery is a senile process involving multifaceted cellular and molecular processes.The contemporary treatment options are limited,with surgical intervention as the gold-standard method;however,each treatment option has its associated limitations,especially when the injury is severe with a large gap.Recent advancements in cell-based therapy and cell-free therapy approaches using stem cell-derived soluble and insoluble components of the cell secretome are fast-emerging therapeutic approaches to treating acute and chronic PNI.The recent pilot study is a leap forward in the field,which is expected to pave the way for more enormous,systematic,and well-designed clinical trials to assess the therapeutic efficacy of mesenchymal stem cell-derived exosomes as a bio-drug either alone or as part of a combinatorial approach,in an attempt synergize the best of novel treatment approaches to address the complexity of the neural repair and regeneration. 展开更多
关键词 EXOSOME Mesenchymal stem cells Nerve injury Stem cells SECRETOME Regeneration
下载PDF
Deer antler stem cell niche: An interesting perspective 被引量:1
11
作者 Claudia Cavallini Elena Olivi +5 位作者 Riccardo Tassinari Chiara Zannini Gregorio Ragazzini Martina Marcuzzi Valentina Taglioli Carlo Ventura world journal of stem cells SCIE 2024年第5期479-485,共7页
In recent years,there has been considerable exploration into methods aimed at enhancing the regenerative capacity of transplanted and/or tissue-resident cells.Biomaterials,in particular,have garnered significant inter... In recent years,there has been considerable exploration into methods aimed at enhancing the regenerative capacity of transplanted and/or tissue-resident cells.Biomaterials,in particular,have garnered significant interest for their potential to serve as natural scaffolds for cells.In this editorial,we provide commentary on the study by Wang et al,in a recently published issue of World J Stem Cells,which investigates the use of a decellularized xenogeneic extracellular matrix(ECM)derived from antler stem cells for repairing osteochondral defects in rat knee joints.Our focus lies specifically on the crucial role of biological scaffolds as a strategy for augmenting stem cell potential and regenerative capabilities,thanks to the establishment of a favorable microenvironment(niche).Stem cell differen-tiation heavily depends on exposure to intrinsic properties of the ECM,including its chemical and protein composition,as well as the mechanical forces it can generate.Collectively,these physicochemical cues contribute to a bio-instructive signaling environment that offers tissue-specific guidance for achieving effective repair and regeneration.The interest in mechanobiology,often conceptualized as a form of“structural memory”,is steadily gaining more validation and momen-tum,especially in light of findings such as these. 展开更多
关键词 Extracellular matrix Antler stem cells Stem cell niche Regenerative medicine Decellularized scaffolds Cell memory
下载PDF
Research progress and challenges in stem cell therapy for diabetic foot: Bibliometric analysis and perspectives 被引量:1
12
作者 Hong-Shuo Shi Xin Yuan +5 位作者 Fang-Fang Wu Xiao-Yu Li Wei-Jing Fan Xiao Yang Xiao-Ming Hu Guo-Bin Liu world journal of stem cells SCIE 2024年第1期33-53,共21页
BACKGROUND Stem cell therapy has shown great potential for treating diabetic foot(DF).AIM To conduct a bibliometric analysis of studies on the use of stem cell therapy for DF over the past two decades,with the aim of ... BACKGROUND Stem cell therapy has shown great potential for treating diabetic foot(DF).AIM To conduct a bibliometric analysis of studies on the use of stem cell therapy for DF over the past two decades,with the aim of depicting the current global research landscape,identifying the most influential research hotspots,and providing insights for future research directions.METHODS We searched the Web of Science Core Collection database for all relevant studies on the use of stem cell therapy in DF.Bibliometric analysis was carried out using CiteSpace,VOSviewer,and R(4.3.1)to identify the most notable studies.RESULTS A search was conducted to identify publications related to the use of stem cells for DF treatment.A total of 542 articles published from 2000 to 2023 were identified.The United States had published the most papers on this subject.In this field,Iran’s Shahid Beheshti University Medical Sciences demonstrated the highest productivity.Furthermore,Dr.Bayat from the same university has been an outstanding researcher in this field.Stem Cell Research&Therapy is the journal with the highest number of publications in this field.The main keywords were“diabetic foot ulcers,”“wound healing,”and“angiogenesis.”CONCLUSION This study systematically illustrated the advances in the use of stem cell therapy to treat DF over the past 23 years.Current research findings suggested that the hotspots in this field include stem cell dressings,exosomes,wound healing,and adipose-derived stem cells.Future research should also focus on the clinical translation of stem cell therapies for DF. 展开更多
关键词 Stem cells Diabetic foot BIBLIOMETRIC CITESPACE VOSviewer R-bibliometrix
下载PDF
Low-intensity pulsed ultrasound reduces alveolar bone resorption during orthodontic treatment via Lamin A/C-Yes-associated protein axis in stem cells 被引量:1
13
作者 Tong Wu Fu Zheng +7 位作者 Hong-Yi Tang Hua-Zhi Li Xin-Yu Cui Shuai Ding Duo Liu Cui-Ying Li Jiu-Hui Jiang Rui-Li Yang world journal of stem cells SCIE 2024年第3期267-286,共20页
BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years,which also may lead to some complications such as alveolar bone resorption or to... BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years,which also may lead to some complications such as alveolar bone resorption or tooth root resorption.Low-intensity pulsed ultrasound(LIPUS),a noninvasive physical therapy,has been shown to promote bone fracture healing.It is also reported that LIPUS could reduce the duration of orthodontic treatment;however,how LIPUS regulates the bone metabolism during the orthodontic treatment process is still unclear.AIM To investigate the effects of LIPUS on bone remodeling in an orthodontic tooth movement(OTM)model and explore the underlying mechanisms.METHODS A rat model of OTM was established,and alveolar bone remodeling and tooth movement rate were evaluated via micro-computed tomography and staining of tissue sections.In vitro,human bone marrow mesenchymal stem cells(hBMSCs)were isolated to detect their osteogenic differentiation potential under compression and LIPUS stimulation by quantitative reverse transcription-polymerase chain reaction,Western blot,alkaline phosphatase(ALP)staining,and Alizarin red staining.The expression of Yes-associated protein(YAP1),the actin cytoskeleton,and the Lamin A/C nucleoskeleton were detected with or without YAP1 small interfering RNA(siRNA)application via immunofluorescence.RESULTS The force treatment inhibited the osteogenic differentiation potential of hBMSCs;moreover,the expression of osteogenesis markers,such as type 1 collagen(COL1),runt-related transcription factor 2,ALP,and osteocalcin(OCN),decreased.LIPUS could rescue the osteogenic differentiation of hBMSCs with increased expression of osteogenic marker inhibited by force.Mechanically,the expression of LaminA/C,F-actin,and YAP1 was downregulated after force treatment,which could be rescued by LIPUS.Moreover,the osteogenic differentiation of hBMSCs increased by LIPUS could be attenuated by YAP siRNA treatment.Consistently,LIPUS increased alveolar bone density and decreased vertical bone absorption in vivo.The decreased expression of COL1,OCN,and YAP1 on the compression side of the alveolar bone was partially rescued by LIPUS.CONCLUSION LIPUS can accelerate tooth movement and reduce alveolar bone resorption by modulating the cytoskeleton-Lamin A/C-YAP axis,which may be a promising strategy to reduce the orthodontic treatment process. 展开更多
关键词 Low-intensity pulsed ultrasound Bone resorption OSTEOGENESIS Cytoskeleton-Lamin A/C-Yes-associated protein axis Bone marrow mesenchymal stem cells Orthodontic tooth movement
下载PDF
RPLP0/TBP are the most stable reference genes for human dental pulp stem cells under osteogenic differentiation 被引量:1
14
作者 Daniel B Ferreira Leticia M Gasparoni +1 位作者 Cristiane F Bronzeri Katiucia B S Paiva world journal of stem cells SCIE 2024年第6期656-669,共14页
BACKGROUND Validation of the reference gene(RG)stability during experimental analyses is essential for correct quantitative real-time polymerase chain reaction(RT-qPCR)data normalisation.Commonly,in an unreliable way,... BACKGROUND Validation of the reference gene(RG)stability during experimental analyses is essential for correct quantitative real-time polymerase chain reaction(RT-qPCR)data normalisation.Commonly,in an unreliable way,several studies use genes involved in essential cellular functions[glyceraldehyde-3-phosphate dehydro-genase(GAPDH),18S rRNA,andβ-actin]without paying attention to whether they are suitable for such experimental conditions or the reason for choosing such genes.Furthermore,such studies use only one gene when Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines recom-mend two or more genes.It impacts the credibility of these studies and causes dis-tortions in the gene expression findings.For tissue engineering,the accuracy of gene expression drives the best experimental or therapeutical approaches.We cultivated DPSCs under two conditions:Undifferentiated and osteogenic dif-ferentiation,both for 35 d.We evaluated the gene expression of 10 candidates for RGs[ribosomal protein,large,P0(RPLP0),TATA-binding protein(TBP),GAPDH,actin beta(ACTB),tubulin(TUB),aminolevulinic acid synthase 1(ALAS1),tyro-sine 3-monooxygenase/tryptophan 5-monooxygenase activation protein,zeta(YWHAZ),eukaryotic translational elongation factor 1 alpha(EF1a),succinate dehydrogenase complex,subunit A,flavoprotein(SDHA),and beta-2-micro-globulin(B2M)]every 7 d(1,7,14,21,28,and 35 d)by RT-qPCR.The data were analysed by the four main algorithms,ΔCt method,geNorm,NormFinder,and BestKeeper and ranked by the RefFinder method.We subdivided the samples into eight subgroups.RESULTS All of the data sets from clonogenic and osteogenic samples were analysed using the RefFinder algorithm.The final ranking showed RPLP0/TBP as the two most stable RGs and TUB/B2M as the two least stable RGs.Either theΔCt method or NormFinder analysis showed TBP/RPLP0 as the two most stable genes.However,geNorm analysis showed RPLP0/EF1αin the first place.These algorithms’two least stable RGs were B2M/GAPDH.For BestKeeper,ALAS1 was ranked as the most stable RG,and SDHA as the least stable RG.The pair RPLP0/TBP was detected in most subgroups as the most stable RGs,following the RefFinfer ranking.CONCLUSION For the first time,we show that RPLP0/TBP are the most stable RGs,whereas TUB/B2M are unstable RGs for long-term osteogenic differentiation of human DPSCs in traditional monolayers. 展开更多
关键词 Dental pulp stem cells Reference gene Housekeeping gene Endogenous gene Osteogenic differentiation RefFinder
下载PDF
Human pluripotent stem cell-derived kidney organoids:Current progress and challenges 被引量:1
15
作者 Hong-Yan Long Zu-Ping Qian +4 位作者 Qin Lan Yong-Jie Xu Jing-Jing Da Fu-Xun Yu Yan Zha world journal of stem cells SCIE 2024年第2期114-125,共12页
Human pluripotent stem cell(hPSC)-derived kidney organoids share similarities with the fetal kidney.However,the current hPSC-derived kidney organoids have some limitations,including the inability to perform nephrogene... Human pluripotent stem cell(hPSC)-derived kidney organoids share similarities with the fetal kidney.However,the current hPSC-derived kidney organoids have some limitations,including the inability to perform nephrogenesis and lack of a corticomedullary definition,uniform vascular system,and coordinated exit path-way for urinary filtrate.Therefore,further studies are required to produce hPSC-derived kidney organoids that accurately mimic human kidneys to facilitate research on kidney development,regeneration,disease modeling,and drug screening.In this review,we discussed recent advances in the generation of hPSC-derived kidney organoids,how these organoids contribute to the understanding of human kidney development and research in disease modeling.Additionally,the limitations,future research focus,and applications of hPSC-derived kidney organoids were highlighted. 展开更多
关键词 KIDNEY ORGANOIDS Human pluripotent stem cell Development Vascular system Disease modeling
下载PDF
Hydrogel loaded with bone marrow stromal cell-derived exosomes promotes bone regeneration by inhibiting inflammatory responses and angiogenesis 被引量:1
16
作者 Shuai Zhang Chuan Lu +1 位作者 Sheng Zheng Guang Hong world journal of stem cells SCIE 2024年第5期499-511,共13页
BACKGROUND Bone healing is a complex process involving early inflammatory immune regu-lation,angiogenesis,osteogenic differentiation,and biomineralization.Fracture repair poses challenges for orthopedic surgeons,neces... BACKGROUND Bone healing is a complex process involving early inflammatory immune regu-lation,angiogenesis,osteogenic differentiation,and biomineralization.Fracture repair poses challenges for orthopedic surgeons,necessitating the search for efficient healing methods.AIM To investigate the underlying mechanism by which hydrogel-loaded exosomes derived from bone marrow mesenchymal stem cells(BMSCs)facilitate the process of fracture healing.METHODS Hydrogels and loaded BMSC-derived exosome(BMSC-exo)gels were charac-terized to validate their properties.In vitro evaluations were conducted to assess the impact of hydrogels on various stages of the healing process.Hydrogels could recruit macrophages and inhibit inflammatory responses,enhance of human umbilical vein endothelial cell angiogenesis,and promote the osteogenic differen-tiation of primary cranial osteoblasts.Furthermore,the effect of hydrogel on fracture healing was confirmed using a mouse fracture model.RESULTS The hydrogel effectively attenuated the inflammatory response during the initial repair stage and subsequently facilitated vascular migration,promoted the formation of large vessels,and enabled functional vascularization during bone repair.These effects were further validated in fracture models.CONCLUSION We successfully fabricated a hydrogel loaded with BMSC-exo that modulates macrophage polarization and angiogenesis to influence bone regeneration. 展开更多
关键词 HYDROGEL Bone marrow mesenchymal stem cells Macrophage polarization ANGIOGENESIS Bone regeneration
下载PDF
Understanding and controlling the variables for stromal vascular fraction therapy 被引量:1
17
作者 Naveen Jeyaraman Sandeep Shrivastava +3 位作者 VR Ravi Arulkumar Nallakumarasamy Aditya Pundkar Madhan Jeyaraman world journal of stem cells SCIE 2024年第8期784-798,共15页
In regenerative medicine,the isolation of mesenchymal stromal cells(MSCs)from the adipose tissue’s stromal vascular fraction(SVF)is a critical area of study.Our review meticulously examines the isolation process of M... In regenerative medicine,the isolation of mesenchymal stromal cells(MSCs)from the adipose tissue’s stromal vascular fraction(SVF)is a critical area of study.Our review meticulously examines the isolation process of MSCs,starting with the extraction of adipose tissue.The choice of liposuction technique,anatomical site,and immediate processing are essential to maintain cell functionality.We delve into the intricacies of enzymatic digestion,emphasizing the fine-tuning of enzyme concentrations to maximize cell yield while preventing harm.The review then outlines the filtration and centrifugation techniques necessary for isolating a purified SVF,alongside cell viability assessments like flow cytometry,which are vital for confirming the efficacy of the isolated MSCs.We discuss the advantages and drawbacks of using autologous vs allogeneic SVF sources,touching upon immunocompatibility and logistical considerations,as well as the variability inherent in donor-derived cells.Anesthesia choices,the selection between hypo-dermic needles vs liposuction cannulas,and the role of adipose tissue lysers in achieving cellular dissociation are evaluated for their impact on SVF isolation.Centrifugation protocols are also analyzed for their part in ensuring the integrity of the SVF.The necessity for standardized MSC isolation protocols is highlighted,promoting reproducibility and successful clinical application.We encourage ongoing research to deepen the understanding of MSC biology and therapeutic action,aiming to further the field of regenerative medicine.The review concludes with a call for rigorous research,interdisciplinary collaboration,and strict adherence to ethical and regulatory standards to safeguard patient safety and optimize treatment outcomes with MSCs. 展开更多
关键词 Mesenchymal stromal cells Stromal vascular fraction Adipose tissue Autologous stromal vascular fraction Stromal vascular fraction isolation
下载PDF
Extracellular vesicles derived from mesenchymal stem cells mediate extracellular matrix remodeling in osteoarthritis through the transport of microRNA-29a 被引量:1
18
作者 Fan Yang Wan-Qi Xiong +7 位作者 Chen-Zhi Li Ming-Jian Wu Xiu-Zhi Zhang Chun-Xiao Ran Zhen-Hao Li Yan Cui Bao-Yi Liu De-Wei Zhao world journal of stem cells SCIE 2024年第2期191-206,共16页
BACKGROUND Knee osteoarthritis(KOA)is a common orthopedic condition with an uncertain etiology,possibly involving genetics and biomechanics.Factors like changes in chondrocyte microenvironment,oxidative stress,inflamm... BACKGROUND Knee osteoarthritis(KOA)is a common orthopedic condition with an uncertain etiology,possibly involving genetics and biomechanics.Factors like changes in chondrocyte microenvironment,oxidative stress,inflammation,and immune responses affect KOA development.Early-stage treatment options primarily target symptom relief.Mesenchymal stem cells(MSCs)show promise for treatment,despite challenges.Recent research highlights microRNAs(miRNAs)within MSC-released extracellular vesicles that can potentially promote cartilage regeneration and hinder KOA progression.This suggests exosomes(Exos)as a promising avenue for future treatment.While these findings emphasize the need for effective KOA progression management,further safety and efficacy validation for Exos is essential.AIM To explore miR-29a’s role in KOA,we’ll create miR-29a-loaded vesicles,testing for early treatment in rat models.METHODS Extraction of bone marrow MSC-derived extracellular vesicles,preparation of engineered vesicles loaded with miR-29a using ultrasonication,and identification using quantitative reverse transcription polymerase chain reaction;after establi-shing a rat model of KOA,rats were randomly divided into three groups:Blank control group injected with saline,normal extracellular vesicle group injected with normal extracellular vesicle suspension,and engineered extrace-llular vesicle group injected with engineered extracellular vesicle suspension.The three groups evaluation,histological detection,and immunohistochemical detection to compare and evaluate the progress of various forms of arthritis.RESULTS General behavioral observation results showed that the extracellular vesicle group and engineered extracellular vesicle group had better performance in all four indicators of pain,gait,joint mobility,and swelling compared to the blank control group.Additionally,the engineered extracellular vesicle group had better pain relief at 4 wk and better knee joint mobility at 8 wk compared to the normal extracellular vesicle group.Imaging examination results showed that the blank control group had the fastest progression of arthritis,the normal extracellular vesicle group had a relatively slower progression,and the engineered extracellular vesicle group had the slowest progression.Gross histological observation results showed that the blank control group had the most obvious signs of arthritis,the normal extracellular vesicle group showed signs of arthritis,and the engineered extracellular vesicle group showed no significant signs of arthritis.Using the Pelletier gross score evaluation,the engineered extracellular vesicle group had the slowest progression of arthritis.Results from two types of staining showed that the articular cartilage of rats in the normal extracellular vesicle and engineered extracellular vesicle groups was significantly better than that of the blank control group,and the engineered extracellular vesicle group had the best cartilage cell and joint surface condition.Immunohistochemical detection of type II collagen and proteoglycan showed that the extracellular matrix of cartilage cells in the normal extracellular vesicle and engineered extracellular vesicle groups was better than that of the blank control group.Compared to the normal extracellular vesicle group,the engineered extracellular vesicle group had a better regulatory effect on the extracellular matrix of cartilage cells.CONCLUSION Engineered Exos loaded with miR-29a can exert anti-inflammatory effects and maintain extracellular matrix stability,thereby protecting articular cartilage,and slowing the progression of KOA. 展开更多
关键词 EXOSOMES OSTEOARTHRITIS Mesenchymal stem cells MicroRNA-29a Intra-articular injection
下载PDF
Unlocking the versatile potential:Adipose-derived mesenchymal stem cells in ocular surface reconstruction and oculoplastics 被引量:1
19
作者 Pier Luigi Surico Anna Scarabosio +5 位作者 Giovanni Miotti Martina Grando Carlo Salati Pier Camillo Parodi Leopoldo Spadea Marco Zeppieri world journal of stem cells SCIE 2024年第2期89-101,共13页
This review comprehensively explores the versatile potential of mesenchymal stem cells(MSCs)with a specific focus on adipose-derived MSCs.Ophthalmic and oculoplastic surgery,encompassing diverse procedures for ocular ... This review comprehensively explores the versatile potential of mesenchymal stem cells(MSCs)with a specific focus on adipose-derived MSCs.Ophthalmic and oculoplastic surgery,encompassing diverse procedures for ocular and periocular enhancement,demands advanced solutions for tissue restoration,functional and aesthetic refinement,and aging.Investigating immunomodulatory,regenerative,and healing capacities of MSCs,this review underscores the potential use of adipose-derived MSCs as a cost-effective alternative from bench to bedside,addressing common unmet needs in the field of reconstructive and regenerative surgery. 展开更多
关键词 Stem cells Adipose stem cell Ocular therapy Oculoplastics REGENERATIVE
下载PDF
Wharton’s jelly mesenchymal stem cells: Future regenerative medicine for clinical applications in mitigation of radiation injury 被引量:1
20
作者 Prashasti Sharma Dharmendra Kumar Maurya world journal of stem cells SCIE 2024年第7期742-759,共18页
Wharton’s jelly mesenchymal stem cells(WJ-MSCs)are gaining significant attention in regenerative medicine for their potential to treat degenerative diseases and mitigate radiation injuries.WJ-MSCs are more naïve... Wharton’s jelly mesenchymal stem cells(WJ-MSCs)are gaining significant attention in regenerative medicine for their potential to treat degenerative diseases and mitigate radiation injuries.WJ-MSCs are more naïve and have a better safety profile,making them suitable for both autologous and allogeneic transplantations.This review highlights the regenerative potential of WJ-MSCs and their clinical applications in mitigating various types of radiation injuries.In this review,we will also describe why WJ-MSCs will become one of the most probable stem cells for future regenerative medicine along with a balanced view on their strengths and weaknesses.Finally,the most updated literature related to both preclinical and clinical usage of WJ-MSCs for their potential application in the regeneration of tissues and organs will also be compiled. 展开更多
关键词 Stem cells Wharton’s jelly mesenchymal stem cells RADIOTHERAPY XEROSTOMIA Lung fibrosis
下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部