针对基本的快速拓展随机树算法(rapidly-exploring random tree,RRT^(*))存在搜索随机性大、效率低、路径非最优的缺点,提出一种引入人工势场法算法(artificial potential field method,APF)和Douglas-Peucker算法的改进RRT^(*)-APF-DP...针对基本的快速拓展随机树算法(rapidly-exploring random tree,RRT^(*))存在搜索随机性大、效率低、路径非最优的缺点,提出一种引入人工势场法算法(artificial potential field method,APF)和Douglas-Peucker算法的改进RRT^(*)-APF-DP路径规划算法.在RRT*算法的采样点生成阶段引入变采样范围偏置搜索与步长自适应调整策略,融合重新设计的APF算法的引力与斥力函数,增强路径扩展导向性与绕过障碍物能力.采用重采样策略改进DP算法,优化避障代价与控制点数量.实验结果表明,本算法规划的避障路径满足机械臂的运动要求,且算法规划的避障路径代价、规划时间和路径控制节点数均得到有效改善.展开更多
针对RRT(rapidly-exploring random tree)路径规划算法在高维空间的机械臂避障路径规划时随机产生巨量节点,导致算法运行负担大、避障性能差、容易陷入局部极值的问题,提出一种结合A^(*)判断函数的改进RRT算法。对RRT的采样方式进行更改...针对RRT(rapidly-exploring random tree)路径规划算法在高维空间的机械臂避障路径规划时随机产生巨量节点,导致算法运行负担大、避障性能差、容易陷入局部极值的问题,提出一种结合A^(*)判断函数的改进RRT算法。对RRT的采样方式进行更改,每次生成一个包含多个随机采样点的序列,并利用改进的A^(*)判断函数进行排序;对每次生成节点进行距离判断,防止陷入局部搜索;利用重复贪心策略删除冗余节点,利用三次B样条平滑路径。在二维、三维地图及机械臂仿真与样机实验中进行算法性能分析,改进RRT算法能够大量减少到达目标位姿时产生的节点,缓解了局部极值,快速稳定地避开障碍物并到达目标位姿,证明了改进RRT算法的有效性和优越性。展开更多
RRT^(*)(rapidly-exploring random tree star)算法是机械臂路径规划中的一个重要工具,但在高维空间内的应用表现存在搜索效率低下、对维数的敏感度高、难以快速收敛至优化路径等问题。此外机械臂避障的规划需要考虑到路径的平滑性,但...RRT^(*)(rapidly-exploring random tree star)算法是机械臂路径规划中的一个重要工具,但在高维空间内的应用表现存在搜索效率低下、对维数的敏感度高、难以快速收敛至优化路径等问题。此外机械臂避障的规划需要考虑到路径的平滑性,但是算法生成的路径往往缺乏所需的平滑性,难以直接应用于实际的机械臂操作。针对这些问题,研究提出了一个基于贪心策略的RRT^(*)算法改进版本。新算法改进了代价函数和重连策略,并在高维搜索环境中,通过贪心算法进行偏执采样,自适应地选取预设路径节点,从而提高搜索效率,增强轨迹的平滑性并进行直接应用。通过Matlab、ROS仿真和机械臂实际应用避障实验,验证了改进的RRT^(*)算法在三维空间中的高效性和优越性,尤其是在搜索效率与路径平滑性等方面。展开更多
文摘针对基本的快速拓展随机树算法(rapidly-exploring random tree,RRT^(*))存在搜索随机性大、效率低、路径非最优的缺点,提出一种引入人工势场法算法(artificial potential field method,APF)和Douglas-Peucker算法的改进RRT^(*)-APF-DP路径规划算法.在RRT*算法的采样点生成阶段引入变采样范围偏置搜索与步长自适应调整策略,融合重新设计的APF算法的引力与斥力函数,增强路径扩展导向性与绕过障碍物能力.采用重采样策略改进DP算法,优化避障代价与控制点数量.实验结果表明,本算法规划的避障路径满足机械臂的运动要求,且算法规划的避障路径代价、规划时间和路径控制节点数均得到有效改善.
文摘针对RRT(rapidly-exploring random tree)路径规划算法在高维空间的机械臂避障路径规划时随机产生巨量节点,导致算法运行负担大、避障性能差、容易陷入局部极值的问题,提出一种结合A^(*)判断函数的改进RRT算法。对RRT的采样方式进行更改,每次生成一个包含多个随机采样点的序列,并利用改进的A^(*)判断函数进行排序;对每次生成节点进行距离判断,防止陷入局部搜索;利用重复贪心策略删除冗余节点,利用三次B样条平滑路径。在二维、三维地图及机械臂仿真与样机实验中进行算法性能分析,改进RRT算法能够大量减少到达目标位姿时产生的节点,缓解了局部极值,快速稳定地避开障碍物并到达目标位姿,证明了改进RRT算法的有效性和优越性。
文摘RRT^(*)(rapidly-exploring random tree star)算法是机械臂路径规划中的一个重要工具,但在高维空间内的应用表现存在搜索效率低下、对维数的敏感度高、难以快速收敛至优化路径等问题。此外机械臂避障的规划需要考虑到路径的平滑性,但是算法生成的路径往往缺乏所需的平滑性,难以直接应用于实际的机械臂操作。针对这些问题,研究提出了一个基于贪心策略的RRT^(*)算法改进版本。新算法改进了代价函数和重连策略,并在高维搜索环境中,通过贪心算法进行偏执采样,自适应地选取预设路径节点,从而提高搜索效率,增强轨迹的平滑性并进行直接应用。通过Matlab、ROS仿真和机械臂实际应用避障实验,验证了改进的RRT^(*)算法在三维空间中的高效性和优越性,尤其是在搜索效率与路径平滑性等方面。