期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于外部因素的用户—产品二部分网络结构特性分析 被引量:1
1
作者 胡兆龙 刘建国 邵凤 《计算机应用研究》 CSCD 北大核心 2013年第11期3310-3313,共4页
产品的外部因素对用户的群集行为有很大的影响,然而在外部因素的影响下,从理论模型上分析用户的群集行为却往往被忽略,因此从理论模型角度分析了用户产品二部分网络结构特性。综合考虑了外部因素和内在属性,建立了用户选择产品的理论模... 产品的外部因素对用户的群集行为有很大的影响,然而在外部因素的影响下,从理论模型上分析用户的群集行为却往往被忽略,因此从理论模型角度分析了用户产品二部分网络结构特性。综合考虑了外部因素和内在属性,建立了用户选择产品的理论模型,并利用生成函数推导了用户和产品的度分布及投影后用户和产品的度分布。最后,举例分析并进行了数值模拟,发现模拟结果与理论分析结果非常吻合,证明了这种方法对于分析二部分网络结构特性是有效的。 展开更多
关键词 外部因素 内在属性 用户—产品二部分网络 结构特性 数值模拟
下载PDF
用户—产品二部分网络中用户声誉实证研究 被引量:1
2
作者 刘晓露 贾书伟 《复杂系统与复杂性科学》 EI CSCD 2020年第1期37-44,共8页
用户声誉度量用户评分的准确程度,用户声誉的研究对于保障社会经济和民生的健康发展具有重要意义。在电影网站MovieLens数据上从用户活跃度与记忆性两个角度进行用户声誉的实证研究。根据用户的度分组,发现用户声誉随着用户度的增加而增... 用户声誉度量用户评分的准确程度,用户声誉的研究对于保障社会经济和民生的健康发展具有重要意义。在电影网站MovieLens数据上从用户活跃度与记忆性两个角度进行用户声誉的实证研究。根据用户的度分组,发现用户声誉随着用户度的增加而增加,将数据集按照时间分成36个季度的片段,同样发现随着用户度的增加,用户声誉出现上升的趋势。同时,将数据集按照时间分成9个年度的片段,发现用户的持续存在率逐年减小,提出一种度量指标来衡量用户声誉记忆性,发现5年之内用户声誉排名的肯德尔系数比用户度的肯德尔系数更高,表明用户声誉比用户活跃度更具有记忆性。通过建立随机模型与实证结果进行比较,发现真实数据集上用户声誉与度的关系以及声誉的记忆性与随机模型有显著不同。 展开更多
关键词 用户—产品二部分网络 用户声誉 集群行为分析 声誉的记忆性
下载PDF
基于流行度的非平衡物质扩散推荐算法 被引量:3
3
作者 郭强 宋文君 +3 位作者 胡兆龙 侯磊 张一璐 陈芳娇 《计算机应用》 CSCD 北大核心 2015年第12期3502-3505,共4页
针对产品的异质性没有在推荐算法中得到很好利用的问题,提出一种考虑产品流行度对用户兴趣偏好影响的物质扩散算法。通过模拟物质在用户-产品二部分网络上的扩散过程,并且引入产品流行度的可调参数,对产品流行度的影响进行定量刻画。在... 针对产品的异质性没有在推荐算法中得到很好利用的问题,提出一种考虑产品流行度对用户兴趣偏好影响的物质扩散算法。通过模拟物质在用户-产品二部分网络上的扩散过程,并且引入产品流行度的可调参数,对产品流行度的影响进行定量刻画。在三个真实数据集上进行数值实验结果表明,该算法与经典的物质扩散算法相比,Movie Lens、Netflix和Last.FM数据集上的平均排序打分可以分别提高25.60%、10.96%和1.2%;推荐列表多样性分别提高59.30%、53.07%和8.59%。所提出的非平衡的物质扩散算法所得到的结果更切合实际。 展开更多
关键词 个性化推荐 非平衡物质扩散算法 产品流行度 二部分网络
下载PDF
一种改进的混合推荐算法 被引量:10
4
作者 宋文君 郭强 刘建国 《上海理工大学学报》 CAS 北大核心 2015年第4期327-331,共5页
基于用户的近期行为能够更好地反映其潜在的兴趣偏好的思想,提出了一种基于有限时间窗口的改进混合推荐算法.在标准数据集Netflix上的实验结果表明,只采用大约31.11%的用户近期历史记录,所得到的推荐结果准确性可以平均提高4.22%,而推... 基于用户的近期行为能够更好地反映其潜在的兴趣偏好的思想,提出了一种基于有限时间窗口的改进混合推荐算法.在标准数据集Netflix上的实验结果表明,只采用大约31.11%的用户近期历史记录,所得到的推荐结果准确性可以平均提高4.22%,而推荐列表多样性可以提高13.74%.另外还发现新提出的算法适用于不同活跃程度的用户,这可以极大地降低大规模数据所引发的计算复杂性问题. 展开更多
关键词 混合推荐算法 时间窗口 用户-产品二部分网络
下载PDF
基于改进用户兴趣点度量方式的推荐算法研究 被引量:2
5
作者 刘建国 吴蓓蕾 +1 位作者 王超 郭强 《情报学报》 CSSCI 北大核心 2011年第11期1158-1162,共5页
推荐算法是个性化推荐系统中最为核心的一部分。文本通过给出产品流行性定义,提出了一种改进的用户兴趣点度量方法,进而将用户的兴趣点嵌入到基于物质扩散原理的推荐算法中。新算法引入参数口度量产品的推荐权重与用户兴趣点之间的关... 推荐算法是个性化推荐系统中最为核心的一部分。文本通过给出产品流行性定义,提出了一种改进的用户兴趣点度量方法,进而将用户的兴趣点嵌入到基于物质扩散原理的推荐算法中。新算法引入参数口度量产品的推荐权重与用户兴趣点之间的关系。MovieLens数据集上的数值结果表明新的用户兴趣点定义方法可以同时改进推荐算法的准确度和推荐列表多样性,当采用60%的数据作为训练集时,多样性可以提高13.15%。进一步的结果表明当训练集很稀疏的时候,应当赋予与用户兴趣点不同的产品更高的推荐能力,随着稀疏度增加,赋予与用户兴趣点相近的产品更多推荐能力可以大幅度提高算法的表现。 展开更多
关键词 推荐算法 用户兴趣点 物质扩散 二部分网络
下载PDF
时间窗口对个性化推荐算法的影响研究 被引量:2
6
作者 宋文君 郭强 刘建国 《复杂系统与复杂性科学》 EI CSCD 北大核心 2015年第1期28-31,共4页
研究了时间窗口对基于10种用户相似性指标的个性化推荐算法的影响。在标准数据集MovieLens上的实验结果表明,只采用大约12.56%的用户近期历史记录,所得到的推荐结果准确性可以平均提高27.17%,而推荐列表多样性可以平均提高3.28%,极大地... 研究了时间窗口对基于10种用户相似性指标的个性化推荐算法的影响。在标准数据集MovieLens上的实验结果表明,只采用大约12.56%的用户近期历史记录,所得到的推荐结果准确性可以平均提高27.17%,而推荐列表多样性可以平均提高3.28%,极大地降低大规模数据所带来的计算复杂性问题。 展开更多
关键词 个性化推荐算法 时间窗口 二部分网络
下载PDF
考虑负面评价的个性化推荐算法研究 被引量:1
7
作者 苏莹 刘建国 +1 位作者 郭强 田大钢 《运筹与管理》 CSSCI CSCD 北大核心 2012年第6期17-22,共6页
利用用户的负面评价信息,本文提出了一种新的推荐算法结构。算法首先将用户选择过的产品分为喜欢和不喜欢两类。其次利用用户的喜好信息构建推荐列表,同时利用负面评价信息构建厌恶列表。最后将推荐列表中的厌恶产品进行过滤,精炼推荐... 利用用户的负面评价信息,本文提出了一种新的推荐算法结构。算法首先将用户选择过的产品分为喜欢和不喜欢两类。其次利用用户的喜好信息构建推荐列表,同时利用负面评价信息构建厌恶列表。最后将推荐列表中的厌恶产品进行过滤,精炼推荐列表。Movielens数据上的实验结果显示,当采用90%数据作为训练集时,推荐列表的排序打分可以达到已知算法的最大值0.077,推荐列表的长度为10时,推荐列表的多样性和推荐新信息的能力相对不考虑负面信息的算法分别提高了16.08%和28.83%。同时,算法可以识别出根据喜好信息构建的推荐列表中19.15%的产品是用户不喜欢的。新算法结构不仅是目前已知的准确度和多样性都最高的算法,而且可以极大地降低系统的计算复杂度,节约存储空间。该工作开辟了利用用户负面评价提高推荐效果的新思路。 展开更多
关键词 推荐算法 用户兴趣点 物质扩散 二部分网络
下载PDF
基于流行度的非平衡热传导推荐算法研究 被引量:1
8
作者 侯磊 胡兆龙 +1 位作者 张博 刘建国 《计算机应用研究》 CSCD 北大核心 2015年第11期3235-3237,共3页
互联网时代所产生的海量信息使用户难以找到自己感兴趣的内容,如何进行准确且个性化的信息过滤成为广泛探讨并且亟待解决的问题。从经典的热传导算法出发,考虑产品流行度对用户选择兴趣偏好的影响,提出非平衡热传导推荐算法,并且通过引... 互联网时代所产生的海量信息使用户难以找到自己感兴趣的内容,如何进行准确且个性化的信息过滤成为广泛探讨并且亟待解决的问题。从经典的热传导算法出发,考虑产品流行度对用户选择兴趣偏好的影响,提出非平衡热传导推荐算法,并且通过引入可调参数λ,对产品流行度的影响程度进行控制。结果表明,在最优值λopt时,对于Movie Lens系统,准确率与召回率分别提高了228.2%和228.4%;而对于Amazon系统,准确率与召回率分别提高了162.7%和162.8%。该算法提高了推荐的效果,表明流行度在用户作选择的过程中起到了重要作用。 展开更多
关键词 个性化推荐 非平衡热传导算法 产品流行度 二部分网络
下载PDF
基于相似度的K阶临近定位算法 被引量:4
9
作者 马文丽 李世宝 +3 位作者 张志刚 杨喜鹏 王升志 张鑫 《计算机系统应用》 2017年第9期165-169,共5页
基于WIFI位置指纹的定位系统能实现较高精度的室内定位,其中基于接收信号强度指示(RSSI)的近邻选择算法在进行室内定位时容易引入奇异点,导致定位精度降低.针对该问题,本文提出了一种基于相似度的K阶临近定位算法(SKNN).该算法借鉴二部... 基于WIFI位置指纹的定位系统能实现较高精度的室内定位,其中基于接收信号强度指示(RSSI)的近邻选择算法在进行室内定位时容易引入奇异点,导致定位精度降低.针对该问题,本文提出了一种基于相似度的K阶临近定位算法(SKNN).该算法借鉴二部分网络中求解节点相似性的思想,建立位置指纹与AP之间的二部分网络,并提出一个相似度参数,用该参数去修正K阶临近定位算法.实验结果表明,本文提出的SKNN算法可以有效的降低奇异点对定位结果的影响,提高定位精度,80%的定位误差均在2 m以内,且在大场景中效果明显. 展开更多
关键词 室内定位 位置指纹 近邻选择算法 二部分网络 相似度
下载PDF
基于NNPLS的丁苯橡胶门尼粘度预测 被引量:2
10
作者 李桢 肖迳 刘美 《微计算机信息》 北大核心 2008年第30期247-249,共3页
门尼粘度是合成橡胶生产的主要质量指标,如何在线监测门尼粘度,并实现质量的自动监控是橡胶生产工业亟待解决的问题。本文应用NNPLS方法建立生产过程门尼粘度预测模型。结合工艺机理分析,找出影响橡胶门尼粘度的主要参数,确定辅助变量,... 门尼粘度是合成橡胶生产的主要质量指标,如何在线监测门尼粘度,并实现质量的自动监控是橡胶生产工业亟待解决的问题。本文应用NNPLS方法建立生产过程门尼粘度预测模型。结合工艺机理分析,找出影响橡胶门尼粘度的主要参数,确定辅助变量,建立基于NNPLS的门尼粘度预测模型。仿真结果,门尼粘度预测值与实际值最大误差为3.6,预测模型精度高,泛化能力强,运行速度快,可以指导生产。 展开更多
关键词 丁苯橡胶 门尼粘度 预测 神经网络部分最小
下载PDF
基于MNNPLS的间歇过程的故障诊断
11
作者 郭磊 赵忠盖 刘飞 《江南大学学报(自然科学版)》 CAS 2011年第3期253-257,共5页
针对间歇生产过程的特点及多向部分最小二乘在故障诊断中存在的问题,提出了一种多向神经网络部分最小二乘方法,实现对间歇过程的在线监控和故障诊断。该方法结合了部分最小二乘的鲁棒性和神经网络表现输入输出非线性关系的能力,提高了... 针对间歇生产过程的特点及多向部分最小二乘在故障诊断中存在的问题,提出了一种多向神经网络部分最小二乘方法,实现对间歇过程的在线监控和故障诊断。该方法结合了部分最小二乘的鲁棒性和神经网络表现输入输出非线性关系的能力,提高了模型的预测精度。将此方法应用于监测青霉素发酵过程中,仿真结果表明,它比传统多向部分最小二乘方法能更及时、准确地检测到故障。 展开更多
关键词 间歇过程 部分最小 神经网络部分最小 故障诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部