We study the well-posedness of the second order degenerate integro-differential equations (P2): (Mu)t'(t) + a(Mu)'(t) = Au(t) + ft_c~ a(t - s)Au(s)ds + f(t), 0 ≤ t ≤ 27r, with periodic bounda...We study the well-posedness of the second order degenerate integro-differential equations (P2): (Mu)t'(t) + a(Mu)'(t) = Au(t) + ft_c~ a(t - s)Au(s)ds + f(t), 0 ≤ t ≤ 27r, with periodic boundary conditions Mu(O) = Mu(27r), (Mu)'(O) = (Mu)'(2π), in periodic Lebesgue-Bochner spaces LP(T,X), periodic Besov spaces BBp,q(T, X) and periodic Triebel-Lizorkin spaces F~,q('F, X), where A and M are closed linear operators on a Banach space X satisfying D(A) C D(M), a C LI(R+) and a is a scalar number. Using known operator- valued Fourier multiplier theorems, we completely characterize the well-posedness of (P2) in the above three function spaces.展开更多
基金supported by National Natural Science Foundation of China(Grant No.11171172)
文摘We study the well-posedness of the second order degenerate integro-differential equations (P2): (Mu)t'(t) + a(Mu)'(t) = Au(t) + ft_c~ a(t - s)Au(s)ds + f(t), 0 ≤ t ≤ 27r, with periodic boundary conditions Mu(O) = Mu(27r), (Mu)'(O) = (Mu)'(2π), in periodic Lebesgue-Bochner spaces LP(T,X), periodic Besov spaces BBp,q(T, X) and periodic Triebel-Lizorkin spaces F~,q('F, X), where A and M are closed linear operators on a Banach space X satisfying D(A) C D(M), a C LI(R+) and a is a scalar number. Using known operator- valued Fourier multiplier theorems, we completely characterize the well-posedness of (P2) in the above three function spaces.