期刊文献+
共找到2,140篇文章
< 1 2 107 >
每页显示 20 50 100
融合注意力机制的YOLOv8-TS交通标志检测网络
1
作者 黄智渊 方遒 郭星浩 《现代电子技术》 北大核心 2025年第1期179-186,共8页
道路交通标志识别是自动驾驶、车联网的重要组成部分,为进一步提高交通标志检测的精度和速度,提出一种基于YOLOv8s改进的YOLOv8-TS道路交通标志检测网络。首先,对YOLOv8s进行了整体的轻量化设计,并设计了Conv-G7S和CSP-G7S模块,减少了... 道路交通标志识别是自动驾驶、车联网的重要组成部分,为进一步提高交通标志检测的精度和速度,提出一种基于YOLOv8s改进的YOLOv8-TS道路交通标志检测网络。首先,对YOLOv8s进行了整体的轻量化设计,并设计了Conv-G7S和CSP-G7S模块,减少了网络的参数量;其次,设计了CSP-SwinTransformer模块,强化了模型利用窗口内的特征信息进行上下文感知和建模的能力;然后,在颈部网络融合了卷积注意力机制(CBAM),强化了模型对不同通道、空间权重信息的学习;最后,对损失函数进行了改进,提升了边界框回归性能。实验结果表明,在中国道路交通标志TT100K数据集上,精确率(Precision)、平均精度(mAP@0.5)分别提高了6.9%、3.7%,而改进后模型的参数量下降了75.4%,模型的大小仅为5.8 MB,平均精度(mAP@0.5)达到96.5%,检测速度由126.58 f/s提升至136.99 f/s。 展开更多
关键词 交通标志检测 YOLOv8-TS 轻量化 注意力机制 Conv-G7S WIoU
下载PDF
交通标志的检测与识别方法研究综述 被引量:2
2
作者 陈晗晗 王俊英 任肖月 《信息技术与信息化》 2024年第3期77-82,共6页
交通标志的检测与识别是当今目标检测领域一项较为关键的技术,在智能交通系统和辅助驾驶技术中发挥着重要作用。对交通标志检测与识别领域早期的传统方法和现阶段较流行的深度学习方法分别做了阐述和分析,相较于传统的交通检测和交通识... 交通标志的检测与识别是当今目标检测领域一项较为关键的技术,在智能交通系统和辅助驾驶技术中发挥着重要作用。对交通标志检测与识别领域早期的传统方法和现阶段较流行的深度学习方法分别做了阐述和分析,相较于传统的交通检测和交通识别方法,基于深度学习的方法更能兼顾准确性和实时性,对于遮挡、光线变化、目标太小等情况有很好的鲁棒性。最后总结了国内外常用的交通标志数据集,并对深度学习方法在该领域的发展进行了展望。 展开更多
关键词 交通标志的检测 交通标志的识别 深度学习 交通标志数据集
下载PDF
《图解道路交通标志标线》
3
《道路交通管理》 2024年第5期92-92,共1页
作者:吴文琳出版社:化学工业出版社定价:42.00本书根据《道路交通标志和标线第2部分:道路交通标志》(GB 5768.2—2022)和《道路交通标志和标线第3部分:道路交通标线》(GB 5768.3—2022)编写,以图解的形式展示了交通标志标线的精准含义,... 作者:吴文琳出版社:化学工业出版社定价:42.00本书根据《道路交通标志和标线第2部分:道路交通标志》(GB 5768.2—2022)和《道路交通标志和标线第3部分:道路交通标线》(GB 5768.3—2022)编写,以图解的形式展示了交通标志标线的精准含义,帮助道路交通参与者根据不同的交通情况,正确、灵活地识别与运用交通标志标线,有序、规范、安全通行。 展开更多
关键词 交通标志标线 道路交通标志 道路交通标线 化学工业出版社 交通标志和标线 图解
下载PDF
基于Transformer的交通标志检测模型研究 被引量:1
4
作者 严丽平 张文剥 +3 位作者 宋凯 蔡彧 王静 徐嘉悦 《华东交通大学学报》 2024年第1期61-69,共9页
【目的】为了解决在复杂环境下,对小目标特征困难以及对小目标检测效果不佳等问题,提出了一种基于Transformer的交通标志检测基干模型。【方法】通过充分利用卷积和Transformer的优势,构建了一种注意力融合的多尺度特征提取基干模型,能... 【目的】为了解决在复杂环境下,对小目标特征困难以及对小目标检测效果不佳等问题,提出了一种基于Transformer的交通标志检测基干模型。【方法】通过充分利用卷积和Transformer的优势,构建了一种注意力融合的多尺度特征提取基干模型,能够使基干网络以全局上下文信息为支撑,有选择地增强有用信息的特征,并抑制不重要的特征。此外,为了在增强特征融合的同时防止网络退化,还加入了类池连接。最后,在TT100K数据集上进行实验。【结果】实验结果表明,以该模型为骨干的元体系结构取得了最高84%的mAP,与基线模型相比m AP最大提升约7%。【结论】模型在提高特征提取效果的同时,也为交通标志检测提供了一种新的思路。 展开更多
关键词 交通标志检测 自动驾驶 TRANSFORMER 注意力融合
下载PDF
基于轻量化SSD的交通标志检测算法 被引量:1
5
作者 张刚 王运明 彭超亮 《实验技术与管理》 CAS 北大核心 2024年第1期63-69,共7页
实时精确的交通标志检测是自动驾驶和智能交通的关键技术。针对现有智能检测算法检测复杂真实道路场景下的交通标志速度慢、无法较好地适用于嵌入式终端设备的问题,提出了一种基于轻量化SSD的交通标识检测算法。该算法采用MobileNetV3_l... 实时精确的交通标志检测是自动驾驶和智能交通的关键技术。针对现有智能检测算法检测复杂真实道路场景下的交通标志速度慢、无法较好地适用于嵌入式终端设备的问题,提出了一种基于轻量化SSD的交通标识检测算法。该算法采用MobileNetV3_large网络替代VGG16网络,可减少模型参数,提高检测实时性;利用添加SE模块的逆残差结构B-neck替换对应的标准卷积增强低层特征层的语义信息;设计改进RFB网络提升小交通标志的检测能力,重新设置预设先验框的尺寸,提升模型对特定数据集的检测能力。实验结果表明,改进SSD算法在中国交通标志检测数据集上的mAP值可达89.04%,比MobileNet-SSD算法提高了5.26%;帧率可达60 frames/s,比SSD算法提高了23 frames/s。所提算法具有较高的实时性和检测精度,对复杂交通环境具有更好的鲁棒性。 展开更多
关键词 交通标志检测 SSD MobileNetV3_large 逆残差结构 RFB 先验框
下载PDF
基于视觉图像与激光点云融合的交通标志快速识别方法 被引量:1
6
作者 王坤 倪娟 陈印 《计算机测量与控制》 2024年第1期226-231,共6页
交通标志对车辆交通起到重要作用和意义,而智能交通中交通标志识别由于标志特征提取效果差,导致识别率低、识别时间长,因此,提出一种新的基于视觉图像与激光点云融合的交通标志快速识别方法。采用双边滤波方法预处理原始激光点云数据;... 交通标志对车辆交通起到重要作用和意义,而智能交通中交通标志识别由于标志特征提取效果差,导致识别率低、识别时间长,因此,提出一种新的基于视觉图像与激光点云融合的交通标志快速识别方法。采用双边滤波方法预处理原始激光点云数据;通过归一化处理得到视觉图像激光点云融合的目标空间激光点云位置测距数值;通过测距值获取目标图像位置,归一化处理交通标志视觉图像,引入k均值聚类算法二聚类处理图像,采用制作的切割模板切割图像感兴趣区域,提取交通标志图像的深度特征,结合卷积神经网络二次过滤特征,重新标定二次过滤后的特征,最终利用卷积神经网络模型实现交通标志快速识别;经实验对比证明,采用所提方法提取各个类型交通标志特征的提取效果较好,并且识别率达到89.74%,识别时间仅为13.1 s,干扰下识别时间最高仅为15.1 s,验证了该方法可以快速且准确识别各个类型的交通标志。 展开更多
关键词 视觉图像 激光点云 交通标志 快速识别 K均值聚类算法 卷积神经网络
下载PDF
基于双向嵌套级联残差的交通标志检测方法
7
作者 江金懋 钟国韵 《现代电子技术》 北大核心 2024年第5期176-181,共6页
交通标志检测是自动驾驶领域的一个重要课题,其对于检测系统的实时性和精度都有非常高的要求。目标检测领域中的YOLOv3算法是业界公认在精度和速度上都处于前列的一种算法。文中以YOLOv3检测算法作为基础网络,提出一种双向嵌套级联残差... 交通标志检测是自动驾驶领域的一个重要课题,其对于检测系统的实时性和精度都有非常高的要求。目标检测领域中的YOLOv3算法是业界公认在精度和速度上都处于前列的一种算法。文中以YOLOv3检测算法作为基础网络,提出一种双向嵌套级联残差单元(bid⁃NCR),替换掉原网络中顺序堆叠的标准残差块。双向嵌套级联残差单元的两条残差边采用相同的结构,都是一次卷积操作加上一次级联残差处理,两条边上级联的标准残差块的数量可以调节,从而形成不同的深度差。然后将两条边的结果逐像素相加,最后再做一次卷积操作。相较于标准残差块,双向嵌套级联残差单元拥有更强的特征提取能力和特征融合能力。文中还提出跨区域压缩模块(CRC),它是对2倍率下采样卷积操作的替代,旨在融合跨区域的通道数据,进一步加强主干网络输入特征图所包含的信息。实验结果表明:提出的模型在CCTSDB数据集上mAP(0.5)、mAP(0.5∶0.95)分别达到96.86%、68.66%,FPS达到66.09帧。相比于YOLOv3算法,3个指标分别提升1.23%、10.35%、127.90%。 展开更多
关键词 交通标志检测 双向嵌套级联残差单元 跨区域压缩模块 YOLOv3 长沙理工大学中国交通标志检测数据集 特征提取 特征融合
下载PDF
基于轻量化YOLOv5的交通标志检测
8
作者 张震 王晓杰 +1 位作者 晋志华 马继骏 《郑州大学学报(工学版)》 CAS 北大核心 2024年第2期12-19,共8页
为了提高道路交通标志的检测速度,提出一种基于轻量化YOLOv5的改进模型。首先,使用Ghost卷积和深度分离卷积(DWConv)构建新的主干模块,减少计算量和参数量;引入加权特征融合网络(BiFPN)结构,增强特征融合能力;将CIoU损失函数替换为SIoU... 为了提高道路交通标志的检测速度,提出一种基于轻量化YOLOv5的改进模型。首先,使用Ghost卷积和深度分离卷积(DWConv)构建新的主干模块,减少计算量和参数量;引入加权特征融合网络(BiFPN)结构,增强特征融合能力;将CIoU损失函数替换为SIoU损失函数,关注真实锚框与预测的角度信息,提升检测精度。其次,对TT100K数据集进行优化,筛选出标签个数大于200的交通标志图片和标注信息共24类。最后,实验结果取得84%的准确率、81.2%的召回率和85.4%的所有类别平均精确率的平均值mAP@0.5,相比原始YOLOv5,参数量减少29.0%,计算量减少29.4%,mAP@0.5仅下降0.1百分点,检测帧率提升了34帧/s。使用改进后的模型进行检测,检测速度有了明显提升,基本达到了在保持检测精度的基础上压缩模型的目的。 展开更多
关键词 交通标志检测 轻量化YOLOv5 SIoU损失函数 Ghost卷积 TT100K BiFPN
下载PDF
一种改进多尺度特征融合的交通标志识别算法
9
作者 余翔 靳闪闪 杨路 《电讯技术》 北大核心 2024年第12期1955-1962,共8页
为了进一步提高在背景复杂且目标距离远的情况下交通标志识别算法的识别准确率,在YOLOv5s算法的基础上提出了一种改进的交通标志识别算法MAFM-YOLO。首先,在颈部网络设计了基于空洞混合注意力机制的多尺度注意力特征融合模块,使网络在... 为了进一步提高在背景复杂且目标距离远的情况下交通标志识别算法的识别准确率,在YOLOv5s算法的基础上提出了一种改进的交通标志识别算法MAFM-YOLO。首先,在颈部网络设计了基于空洞混合注意力机制的多尺度注意力特征融合模块,使网络在特征融合阶段能够高效保留图像中的细节信息,对小目标更加的敏感。其次,在回归阶段采用归一化Wasserstein距离改进原有的损失函数,提高了边界框的回归性能,从而进一步提高网络的识别性能。在TT100K数据集上的实验结果表明,MAFM-YOLO较基准模型在精确率、召回率和平均精度均值上分别实现了9.4%、3.3%、6.3%的提升。 展开更多
关键词 交通标志识别 YOLOv5s 多尺度特征融合 混合注意力机制 归一化Wasserstein距离
下载PDF
基于特征增强和注意力聚焦的交通标志检测算法
10
作者 张小瑞 吴川 孙伟 《中国电子科学研究院学报》 2024年第7期588-597,共10页
针对传统方法无法应对交通标志检测中目标小、背景复杂等难点问题,本文提出一种基于特征增强和注意力聚焦的交通标志检测算法。首先,设计了双主干网络,对浅层特征信息与深层语义信息进行融合和增强,缓解颈部网络特征信息因多次下采样导... 针对传统方法无法应对交通标志检测中目标小、背景复杂等难点问题,本文提出一种基于特征增强和注意力聚焦的交通标志检测算法。首先,设计了双主干网络,对浅层特征信息与深层语义信息进行融合和增强,缓解颈部网络特征信息因多次下采样导致信息丢失和融合不充分的问题。通过增加小目标检测层,更好地适应自然场景下小目标交通标志的检测;其次,设计了CA3注意力模块,将通道特征与空间位置信息互补地应用到特征图中,降低复杂背景的噪声干扰;最后,采用WIoUv3 Loss,动态地对梯度增益进行合理分配,及时降低数据集里低质量样本产生的有害梯度。实验结果表明,在CCTSDB 2021和GTSDB数据集上,本文提出的模型相较于YOLOv5分别实现了4.30%和1.10%的平均精度(mAP)提升。相较于其他主流模型,该模型在复杂道路场景下展现出了对交通标志更优的检测效果。 展开更多
关键词 交通标志 背景噪声 特征增强 注意力机制 小目标检测 YOLOv5
下载PDF
基于改进YOLOv5的复杂场景下交通标志识别方法 被引量:1
11
作者 胡瑛 刘狄昆 +2 位作者 刘拯 李铸成 乔汇东 《湖南工程学院学报(自然科学版)》 2024年第2期31-38,共8页
交通标志识别是智能驾驶不可缺少的重要环节,关系着人们进行智能驾驶的安全问题,本文以复杂环境下的交通标志为研究对象,针对目前交通标志识别难以兼顾实时性和准确率的问题,提出一种改进的YOLOv5交通标志识别算法.首先,对数据集做预处... 交通标志识别是智能驾驶不可缺少的重要环节,关系着人们进行智能驾驶的安全问题,本文以复杂环境下的交通标志为研究对象,针对目前交通标志识别难以兼顾实时性和准确率的问题,提出一种改进的YOLOv5交通标志识别算法.首先,对数据集做预处理与数据增强,加强对目标的检测能力;其次,引用PP-LCNet轻量型网络,减少主干网络参数量,实现模型轻量化;最后,在颈部网络融合注意力机制,以增强特征提取能力.实验结果表明,相较于原YOLOv5s模型,本文算法的模型参数量减少了25.9%,检测速度提高了50.08帧/s,平均精度达到97.58%,易于部署且能达到智能驾驶场景中对交通标志识别的实时性和准确率要求. 展开更多
关键词 交通标志识别 数据增强 YOLOv5 PP-LCNet网络 注意力机制
下载PDF
基于双目立体视觉和轻量化神经网络的交通标志分割和识别
12
作者 孙静 刘晓燕 《微型电脑应用》 2024年第6期38-41,共4页
为了降低交通标志图像分割运算量,提出一种基于双目立体视觉和轻量化神经网络的交通标志分割和识别方法。使用已标定的双目立体视觉相机采集交通标志图像,并将其作为轻量化卷积神经网络的输入,通过卷积运算和池化运算提取交通标志的特... 为了降低交通标志图像分割运算量,提出一种基于双目立体视觉和轻量化神经网络的交通标志分割和识别方法。使用已标定的双目立体视觉相机采集交通标志图像,并将其作为轻量化卷积神经网络的输入,通过卷积运算和池化运算提取交通标志的特征。在全连接层中,采用极限学习机和权值修正方法修正输出权值,从而得到交通标志的分割结果。实验结果表明,所提方法能够有效采集高精度的交通标志图像,并降低图像分割运算的复杂性,从而提高交通标志图像的应用性。 展开更多
关键词 双目立体视觉 轻量化 交通标志 优化分割方法 极限学习机
下载PDF
高速公路互通立交与服务区合建交通标志设计 被引量:1
13
作者 陈泽 刘建国 +2 位作者 王晓玉 张慧铭 李之啸 《山东交通科技》 2024年第1期62-64,共3页
山区高速公路受地形、地质、生态环境及用地等条件的制约,互通立交与服务区合建逐渐增加,互通立交与服务区为同一高速公路主线出口,当驾驶员不熟悉交通标志时,可能会导致驾驶员误判,带来安全隐患。在山东省内首个高速公路互通立交与服... 山区高速公路受地形、地质、生态环境及用地等条件的制约,互通立交与服务区合建逐渐增加,互通立交与服务区为同一高速公路主线出口,当驾驶员不熟悉交通标志时,可能会导致驾驶员误判,带来安全隐患。在山东省内首个高速公路互通立交与服务区合建工程的基础上,提出高速公路互通立交与服务区合建的交通标志设计示例。 展开更多
关键词 高速公路 交通标志 互通立交 服务区 交通标志设计
下载PDF
基于深度学习的雾天交通标志检测系统设计
14
作者 张慧 《信息与电脑》 2024年第18期100-102,共3页
针对雾天环境能见度低、采集的图像质量差导致的交通标志检测准确率低、易出现漏检、误检等问题,本文设计并实现了一款基于深度学习的雾天交通标志检测系统。首先,采用AOD-NET算法对采集到的雾天图像进行去雾处理,然后将YOLOv5算法作为... 针对雾天环境能见度低、采集的图像质量差导致的交通标志检测准确率低、易出现漏检、误检等问题,本文设计并实现了一款基于深度学习的雾天交通标志检测系统。首先,采用AOD-NET算法对采集到的雾天图像进行去雾处理,然后将YOLOv5算法作为目标检测算法,对去雾后的图像进行交通标志进行检测与识别,从而实现了雾天环境下的交通标志检测。测试结果表明,该系统能够有效地提高雾天天气情况下交通标志的检测准确率,减少误检、漏检,实现了交通标志快速准确的检测和识别。 展开更多
关键词 交通标志识别 雾天图像 YOLOv5 AOD-Net
下载PDF
基于轻量化YOLOv8s交通标志的检测 被引量:4
15
作者 朱强军 胡斌 +1 位作者 汪慧兰 王杨 《图学学报》 CSCD 北大核心 2024年第3期422-432,共11页
为了提高交通标志检测的实时性和可行性,提出了一种基于YOLOv8s的轻量化交通标志检测模型。首先,用FasterNet中的残差模块FasterNetBlock替换C2f模块中的BottleNeck,降低模型参数量和计算量;其次,用一种小目标检测层去替换大目标检测层... 为了提高交通标志检测的实时性和可行性,提出了一种基于YOLOv8s的轻量化交通标志检测模型。首先,用FasterNet中的残差模块FasterNetBlock替换C2f模块中的BottleNeck,降低模型参数量和计算量;其次,用一种小目标检测层去替换大目标检测层,降低Backbone中网络层数,实现大幅度提高检测速度和降低参数量;最后,用Wise-IOU替换原CIOU损失函数,提高速度和精度。在TT100K交通标志数据集上验证,其与YOLOv8s模型比较,mAP50提高了5.16%,参数量降低了76.48%,计算量降低了13.33%,FPS快了35.83%。与其他模型相比,mAP50平均提高了15.11%,参数量平均降低了85.74%,计算量平均下降了46.23%,FPS平均提高了31.49%。该模型具有检测精度高、参数量少、计算量低、速度快等优点,较原算法有很大地提升,且与其他先进的交通标志检测模型比较时表现出了很强的竞争力,在交通标志检测中具有较大优势。 展开更多
关键词 轻量化 YOLOv8s 改进小目标层 交通标志检测 Wise-IOU TT100K
下载PDF
基于Cache-DCN YOLOX算法的交通标志检测方法研究 被引量:1
16
作者 高尉峰 王如刚 +2 位作者 王媛媛 周锋 郭乃宏 《计算机测量与控制》 2024年第2期71-77,84,共8页
针对传统方式识别交通标志算法存在的检测精度较低的问题,提出了一种基于Cache-DCN YOLOX算法的交通标志识别方法;在该方法中,使用DCN可变形卷积替换backbone中的普通卷积,有效地增大了模型的感受野,提高了特征提取能力;使用EIoU损失函... 针对传统方式识别交通标志算法存在的检测精度较低的问题,提出了一种基于Cache-DCN YOLOX算法的交通标志识别方法;在该方法中,使用DCN可变形卷积替换backbone中的普通卷积,有效地增大了模型的感受野,提高了特征提取能力;使用EIoU损失函数代替YOLOX中的GIoU损失函数,优化了训练模型,提高了收敛的速度;优化设计了YOLOX算法中的强弱两阶段的训练过程,增强了模型的泛化性能,同时加入cache方案,进一步提高了检测精度;在交通标志数据集TT100K上进行了实验,提出方法的检测精度为67.2%,比原YOLOX算法的检测精度提升了6.4%,同时,在被遮挡的小目标等多种受干扰的环境下,提出的方法能够精确地检测出交通标志,并有着较好的置信度,满足实际需求。 展开更多
关键词 深度学习 YOLOX 交通标志识别 可变形卷积 小目标检测
下载PDF
基于几何透视图像预处理和CNN的全景图像交通标志识别算法 被引量:1
17
作者 曹峻凡 张向利 +1 位作者 闫坤 张红梅 《计算机应用与软件》 北大核心 2024年第7期171-176,共6页
为解决深度学习方法在高清全景图像中检测交通标志遇到图形处理器资源不足、小目标容易漏检、检测速度过慢等问题,采用小目标过采样训练数据生成方法、图像分块和几何透视检测预处理方法以及改进的轻量神经网络Improved-Tiny-YOLOv3,提... 为解决深度学习方法在高清全景图像中检测交通标志遇到图形处理器资源不足、小目标容易漏检、检测速度过慢等问题,采用小目标过采样训练数据生成方法、图像分块和几何透视检测预处理方法以及改进的轻量神经网络Improved-Tiny-YOLOv3,提出了一种基于深度学习的轻量级全景图像中交通标志检测方法。并在Tsinghua-Tencent 100K数据集上进行了实验,mAP值达到92.7%,在Nvidia 1080Ti显卡上检测速度可达到20 FPS,实验结果验证了所提方法的有效性。 展开更多
关键词 交通标志检测识别 Improved-Tiny-YOLOv3 几何透视法 随机裁剪 CIoU 全景图像
下载PDF
基于多尺度YOLOv5的交通标志检测 被引量:2
18
作者 朱宁可 张树地 +2 位作者 王翰文 李红松 余鹏飞 《无线电工程》 2024年第3期623-632,共10页
针对小目标交通标志检测存在的检测精度低、漏检率高等问题,提出了一种基于多尺度融合的YOLOv5改进算法。在主干网络后输出4个有效特征层以便更好地融合多尺度信息,在主干网络输出的3个特征层中添加改进的多尺度融合注意力机制CBAM_U,... 针对小目标交通标志检测存在的检测精度低、漏检率高等问题,提出了一种基于多尺度融合的YOLOv5改进算法。在主干网络后输出4个有效特征层以便更好地融合多尺度信息,在主干网络输出的3个特征层中添加改进的多尺度融合注意力机制CBAM_U,以提升网络的检测能力;在Path Aggregation Network(PANet)下采样过程中添加Fusion模块,促进不同感受野下特征的细融合;在YOLOHand前加入Adaptively Spatial Feature Fusion(ASFF)模块解决特征金字塔融合的不一致性,进一步提升网络的表达能力。实验结果表明,提出的方法相比于原始YOLOv5网络在CCTSDB数据集中mAP@0.5提升了3.07%,召回率提升了3.83%,查准率提升了1.64%,F1-Score提升了2.66%,相比于其他检测算法,改进后的YOLOv5算法在复杂场景中具有更好的鲁棒性。 展开更多
关键词 交通标志检测 小目标 多尺度融合 CBAM_U 细融合
下载PDF
基于CF-YOLO的雾霾交通标志识别 被引量:1
19
作者 吴攀超 郑卓纹 +1 位作者 王婷婷 孙琦 《计算机工程与设计》 北大核心 2024年第7期2203-2211,共9页
针对现有交通标志检测模型在雾霾环境下出现漏检、错检以及参数较大等问题,设计一种基于YOLOv5s改进的CF-YOLO检测模型。为加强在雾霾环境中对交通标志的检测能力,提出一种基于颜色衰减先验的自适应伽马变换图像预处理算法;为增强对目... 针对现有交通标志检测模型在雾霾环境下出现漏检、错检以及参数较大等问题,设计一种基于YOLOv5s改进的CF-YOLO检测模型。为加强在雾霾环境中对交通标志的检测能力,提出一种基于颜色衰减先验的自适应伽马变换图像预处理算法;为增强对目标的定位能力及检测精度,将坐标注意力机制融合到网络中;为实现模型轻量化,引入FasterNetBlock构建网络。实验结果表明,改进算法在雾霾环境下交通标志检测相比原YOLOv5模型权重减少了2.3 MB,精度提高了8.5个百分点。 展开更多
关键词 交通标志识别 目标检测 卷积神经网络 坐标注意力机制 颜色衰减先验 伽马变换 深度学习
下载PDF
基于YOLOv5s优化模型的道路交通标志异常状态检测
20
作者 陈子昂 郭唐仪 +2 位作者 隋立岩 周洋 陈新 《公路交通科技》 CAS CSCD 北大核心 2024年第10期8-16,共9页
道路交通标志的遮挡、磨损等异常,对交通安全和通行效率造成很大的影响。针对目前道路交通标志异常状态检测实践中存在的检测误差高、模型大而难嵌入设备终端等问题,提出了一种基于YOLOv5s优化的目标检测轻量化模型。提出的YOLOv5s优化... 道路交通标志的遮挡、磨损等异常,对交通安全和通行效率造成很大的影响。针对目前道路交通标志异常状态检测实践中存在的检测误差高、模型大而难嵌入设备终端等问题,提出了一种基于YOLOv5s优化的目标检测轻量化模型。提出的YOLOv5s优化模型内容包括:以MobileNetv3网络来替换模型主干网络,减小模型的大小;以BiFPN网络替换原生的PANet网络,减少冗余计算,提高模型特征融合的能力;以CBAM轻量级注意力机制代替MobileNetv3的SENet注意力机制模块,提升模型准确性;引入焦点损失函数,改善正负样本数量失衡影响。以南京、淮安获取的交通标志异常状态图片为基础数据,运用图像处理方法将原始的数据集进行扩充,共获取到了2 511张标志遮挡异常状态的图片和2 615张标志磨损异常状态的图片。运用该模型检测道路交通标志遮挡和磨损等异常,采用Adam优化器训练至模型收敛。结果表明,模型的mAP达到90.5%,精确度为91.28%,召回率为90.32%,F1分数为0.9,检测速度达到52帧/s。与原YOLOv5s模型相比,模型大小仅为其1/2,且精确度、F1分数、检测速度分别提高了3.84%,0.03,3.84帧/s。结果表明,提出的基于YOLOv5s优化的目标检测模型,在提高检测准确率的同时还能够满足轻量化的需求,能较好嵌入智能养护移动端,实现对于道路交通标志异常状态的智能化检测。 展开更多
关键词 智能交通 异常检测 YOLOv5s 交通标志 轻量化
下载PDF
上一页 1 2 107 下一页 到第
使用帮助 返回顶部