原油作为一种重要的战略物资,在我国经济和军事等多个领域均起到重要作用。本文提出一种基于深度学习的目标检测模型TCS-YOLO(Transformer-CBAM-SIoU YOLO),该模型在YOLOv5的基础上进行优化,同时基于吉林一号光学遥感卫星影像数据集进...原油作为一种重要的战略物资,在我国经济和军事等多个领域均起到重要作用。本文提出一种基于深度学习的目标检测模型TCS-YOLO(Transformer-CBAM-SIoU YOLO),该模型在YOLOv5的基础上进行优化,同时基于吉林一号光学遥感卫星影像数据集进行实验,对全球范围内的储油罐进行识别与分类。优化内容包括:添加基于Transformer架构的C3TR层对网络进行优化;使用CBAM(Convolutional Block Attention Module)在网络层中添加注意力机制;使用SIoU(Scale-Sensitive Intersection over Union) loss代替CIoU(Complete Intersection over Union) loss作为定位损失函数。实验结果表明:与YOLOv5相比,TCS-YOLO的模型复杂度(Giga Floating Point of Operations,GFLOPs)平均减少3.13%,模型参数量(Parameters)平均减少0.88%,推理速度(Inference Speed)平均降低0.2 ms,mAP0.5(mean Average Precision)平均提升0.2%,mAP0.5∶0.95平均提升1.26%。与此同时,将TCS-YOLO模型与通用目标识别模型YOLOv3,YOLOv4,YOLOv5和Swin Transformer进行对比实验,TCS-YOLO均体现出了更高效的特点。TCS-YOLO模型对全球储油罐的目标识别具有通用可行性,可为遥感数据在能源期货领域提供技术参考。展开更多
文摘原油作为一种重要的战略物资,在我国经济和军事等多个领域均起到重要作用。本文提出一种基于深度学习的目标检测模型TCS-YOLO(Transformer-CBAM-SIoU YOLO),该模型在YOLOv5的基础上进行优化,同时基于吉林一号光学遥感卫星影像数据集进行实验,对全球范围内的储油罐进行识别与分类。优化内容包括:添加基于Transformer架构的C3TR层对网络进行优化;使用CBAM(Convolutional Block Attention Module)在网络层中添加注意力机制;使用SIoU(Scale-Sensitive Intersection over Union) loss代替CIoU(Complete Intersection over Union) loss作为定位损失函数。实验结果表明:与YOLOv5相比,TCS-YOLO的模型复杂度(Giga Floating Point of Operations,GFLOPs)平均减少3.13%,模型参数量(Parameters)平均减少0.88%,推理速度(Inference Speed)平均降低0.2 ms,mAP0.5(mean Average Precision)平均提升0.2%,mAP0.5∶0.95平均提升1.26%。与此同时,将TCS-YOLO模型与通用目标识别模型YOLOv3,YOLOv4,YOLOv5和Swin Transformer进行对比实验,TCS-YOLO均体现出了更高效的特点。TCS-YOLO模型对全球储油罐的目标识别具有通用可行性,可为遥感数据在能源期货领域提供技术参考。