To eliminate rotation deviation of sequential images mosaic when measuring linear dimensions of large scale parts with computer vision, a novel algorithm based on the chain code searching method is proposed. After ima...To eliminate rotation deviation of sequential images mosaic when measuring linear dimensions of large scale parts with computer vision, a novel algorithm based on the chain code searching method is proposed. After image preprocessing, including image filtering, image segmentation, and edge detection, the chain code length of the contour line can be searched out by the proposed method. Then, the angle from the contour line to the coordinate axis is computed with the length of the contour line. After that, the sequence is rotated in the opposite direction and the rotation deviation is eliminated. It is prepared for the next mosaic of sequences in eliminating shifting deviation. Experiments are carried out on parts with a linear profile rotating angle from 0° to 9°. The results show that compared with the commonly used Hough transform, the new method has higher precision and faster speed, which is important in realizing online high precision measurements of large scale parts with a linear profile.展开更多
Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificia...Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificial neural network(ANN) and the support vector machine(SVM) respectively. And the recognition experiments were carried out by using flame image data sampled from an alumina rotary kiln to evaluate their effectiveness. The results show that the two recognition methods can achieve good results, which verify the effectiveness of the shape descriptor. The highest recognition rate is 88.83% for SVM and 87.38% for ANN, which means that the performance of the SVM is better than that of the ANN.展开更多
基金The National Natural Science Foundation of China(No.50805023)the Program for Special Talent in Six Fields of Jiangsu Province(No.2008144)Jiangsu Provincial Science and Technology Achievement Transformation Project(No.BA2010093)
文摘To eliminate rotation deviation of sequential images mosaic when measuring linear dimensions of large scale parts with computer vision, a novel algorithm based on the chain code searching method is proposed. After image preprocessing, including image filtering, image segmentation, and edge detection, the chain code length of the contour line can be searched out by the proposed method. Then, the angle from the contour line to the coordinate axis is computed with the length of the contour line. After that, the sequence is rotated in the opposite direction and the rotation deviation is eliminated. It is prepared for the next mosaic of sequences in eliminating shifting deviation. Experiments are carried out on parts with a linear profile rotating angle from 0° to 9°. The results show that compared with the commonly used Hough transform, the new method has higher precision and faster speed, which is important in realizing online high precision measurements of large scale parts with a linear profile.
基金Project(60634020) supported by the National Natural Science Foundation of China
文摘Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificial neural network(ANN) and the support vector machine(SVM) respectively. And the recognition experiments were carried out by using flame image data sampled from an alumina rotary kiln to evaluate their effectiveness. The results show that the two recognition methods can achieve good results, which verify the effectiveness of the shape descriptor. The highest recognition rate is 88.83% for SVM and 87.38% for ANN, which means that the performance of the SVM is better than that of the ANN.