针对目标函数中包含耦合函数H(x,y)的非凸非光滑极小化问题,提出了一种线性惯性交替乘子方向法(Linear Inertial Alternating Direction Method of Multipliers,LIADMM)。为了方便子问题的求解,对目标函数中的耦合函数H(x,y)进行线性化...针对目标函数中包含耦合函数H(x,y)的非凸非光滑极小化问题,提出了一种线性惯性交替乘子方向法(Linear Inertial Alternating Direction Method of Multipliers,LIADMM)。为了方便子问题的求解,对目标函数中的耦合函数H(x,y)进行线性化处理,并在x-子问题中引入惯性效应。在适当的假设条件下,建立了算法的全局收敛性;同时引入满足Kurdyka-Lojasiewicz不等式的辅助函数,验证了算法的强收敛性。通过两个数值实验表明,引入惯性效应的算法比没有惯性效应的算法收敛性能更好。展开更多
针对结构化的非凸非光滑优化问题,提出了一种改进的惯性近端交替方向乘子法(Modified Inertial Proximal Alternating Direction Method of Multipliers, MID-PADMM)。该问题在多个领域,包括机器学习、信号处理和经济学中具有重要应用...针对结构化的非凸非光滑优化问题,提出了一种改进的惯性近端交替方向乘子法(Modified Inertial Proximal Alternating Direction Method of Multipliers, MID-PADMM)。该问题在多个领域,包括机器学习、信号处理和经济学中具有重要应用。现有算法在处理这类问题时,往往面临收敛速度慢或无法保证收敛的挑战。为了克服这些限制,引入了一种双重松弛项,以增强算法的鲁棒性和灵活性。理论分析表明,MID-PADMM算法在适当的条件下能够实现全局收敛,并且具有O(1/k)的迭代复杂度,其中k代表迭代次数。数值实验结果表明,与现有的状态最优算法相比,MID-PADMM在多个实例中展现出更快的收敛速度和更高的求解质量。展开更多
文摘针对目标函数中包含耦合函数H(x,y)的非凸非光滑极小化问题,提出了一种线性惯性交替乘子方向法(Linear Inertial Alternating Direction Method of Multipliers,LIADMM)。为了方便子问题的求解,对目标函数中的耦合函数H(x,y)进行线性化处理,并在x-子问题中引入惯性效应。在适当的假设条件下,建立了算法的全局收敛性;同时引入满足Kurdyka-Lojasiewicz不等式的辅助函数,验证了算法的强收敛性。通过两个数值实验表明,引入惯性效应的算法比没有惯性效应的算法收敛性能更好。
文摘针对结构化的非凸非光滑优化问题,提出了一种改进的惯性近端交替方向乘子法(Modified Inertial Proximal Alternating Direction Method of Multipliers, MID-PADMM)。该问题在多个领域,包括机器学习、信号处理和经济学中具有重要应用。现有算法在处理这类问题时,往往面临收敛速度慢或无法保证收敛的挑战。为了克服这些限制,引入了一种双重松弛项,以增强算法的鲁棒性和灵活性。理论分析表明,MID-PADMM算法在适当的条件下能够实现全局收敛,并且具有O(1/k)的迭代复杂度,其中k代表迭代次数。数值实验结果表明,与现有的状态最优算法相比,MID-PADMM在多个实例中展现出更快的收敛速度和更高的求解质量。