下一个兴趣点推荐是推荐算法领域的热点,旨在为用户推荐适合的下一地点。较新的研究通过图和序列方法模拟用户与POI的交互以及POI之间转换关系,性能得到显著提升。然而,现有模型仍然存在需要解决的问题。针对现有的下一个兴趣点推荐模...下一个兴趣点推荐是推荐算法领域的热点,旨在为用户推荐适合的下一地点。较新的研究通过图和序列方法模拟用户与POI的交互以及POI之间转换关系,性能得到显著提升。然而,现有模型仍然存在需要解决的问题。针对现有的下一个兴趣点推荐模型的局限性,特别是如何充分捕捉User-POI交互图上全局和局部信息,以及缓解图神经网络的过平滑特性导致图上信息丢失的问题,提出了基于graph Transformer的多编码模型(multi-coding network based on GT model)对下一个兴趣点进行推荐。首先,从位置和结构的视角上联合对user-POI交互图上进行全局、局部以及相对信息进行编码;然后,将编码后生成的图嵌入通过graph Transformer网络层更新图上节点与边信息;最后通过MLP网络层生成预测;最终,MCGT在Gowalla和TKY两个公开数据集进行对比实验。结果表明,在Gowalla数据集上recall和NDCG指标至少有3.79%的提升,在TKY数据集上recall和NDCG指标至少有2.5%的提升,证明了MCGT设计的合理性与有效性。展开更多
现有的大多数兴趣点(point of interest,POI)推荐系统由于忽略了用户签到序列中的顺序行为模式,以及用户的个性化偏好对于POI推荐的影响,导致POI推荐系统性能较低,推荐结果不可靠,进而影响用户体验。为了解决上述问题,提出一种融合时序...现有的大多数兴趣点(point of interest,POI)推荐系统由于忽略了用户签到序列中的顺序行为模式,以及用户的个性化偏好对于POI推荐的影响,导致POI推荐系统性能较低,推荐结果不可靠,进而影响用户体验。为了解决上述问题,提出一种融合时序门控图神经网络的兴趣点推荐方法。运用时序门控图神经网络(temporal gated graph neural network,TGGNN)学习POI embedding;采用注意力机制捕获用户的长期偏好;通过注意力机制融合用户的最新偏好和实时偏好,进而捕获用户的短期偏好。通过自适应的方式结合用户的长期和短期偏好,计算候选POI的推荐得分,并根据得分为用户进行POI推荐。实验结果表明,与现有方法相比,该方法在召回率和平均倒数排名这两项指标上均有较为明显的提升,因此可以取得很好的推荐效果,具有良好的应用前景。展开更多
兴趣点(Point-Of-Interest,POI)推荐是基于位置的社交网络(Location-based Social Networks,LBSNs)研究中最重要的任务之一。为了解决POI推荐中的空间稀疏性问题,提出一种用于位置推荐的长短期偏好时空注意力网络(LSAN)。首先,构建了签...兴趣点(Point-Of-Interest,POI)推荐是基于位置的社交网络(Location-based Social Networks,LBSNs)研究中最重要的任务之一。为了解决POI推荐中的空间稀疏性问题,提出一种用于位置推荐的长短期偏好时空注意力网络(LSAN)。首先,构建了签到序列的时空关系矩阵,使用多头注意力机制从中提取非连续签到和非相邻位置中的时空相关性,缓解签到数据稀疏所带来的困难。其次,在模型中设置用户短期偏好和长期偏好提取模块,自适应的将二者结合在一起,考虑了用户偏好对用户决策影响。最后,在Foursquare数据集上进行测试,并与其它模型结果进行对比,证实了提出的LSAN模型结果最优。研究表明LSAN模型能够获得最佳的推荐效果,为POI推荐提供新思路。展开更多
为了提高兴趣点(point of interest,POI)推荐的准确性和个性化,提升用户对推荐结果的满意度,针对不同活跃度用户的特点,提出一种融合用户活跃度的上下文感知兴趣点推荐算法(A POI recommendation algorithm that integrates geographica...为了提高兴趣点(point of interest,POI)推荐的准确性和个性化,提升用户对推荐结果的满意度,针对不同活跃度用户的特点,提出一种融合用户活跃度的上下文感知兴趣点推荐算法(A POI recommendation algorithm that integrates geographical,categorical,and temporal factors,while simultaneously considering user activity),简称AU-GCTRS。首先,为缓解数据稀疏性和冷启动问题,引入多维上下文信息;其次,通过挖掘用户签到频率、签到兴趣点数量和签到时间,将用户划分为不同活跃度的群体;最后,综合用户活跃度与上下文分数,将得分高的前K个兴趣点推荐给用户。在真实数据集上进行实验表明,AU-GCTRS算法比其他流行算法更有效地缓解了数据稀疏性和冷启动问题,提高了推荐准确率和召回率。展开更多
随着基于位置的社交网络在日常生活中的广泛应用,有效提取用户的隐藏兴趣和行为序列模式并向用户提供满足其个性化需求的下一个兴趣点推荐服务成为推荐领域的热点问题之一.针对下一个兴趣点推荐中的用户偏好挖掘问题,提出基于用户兴趣...随着基于位置的社交网络在日常生活中的广泛应用,有效提取用户的隐藏兴趣和行为序列模式并向用户提供满足其个性化需求的下一个兴趣点推荐服务成为推荐领域的热点问题之一.针对下一个兴趣点推荐中的用户偏好挖掘问题,提出基于用户兴趣点类别周期性偏好和短期兴趣相结合的兴趣点推荐模型(Combining Periodic and Spatio-Temporal Intervals'Network,CPSTIN).该模型将用户的签到记录按小时时段模式嵌入时间窗口并使用多头自注意力机制提取用户结合用户兴趣点类别的周期性偏好;同时,将非连续时空间隔信息送入可学习矩阵,使用线性插值法提取用户基于高阶关联性的短期兴趣.最后,在两个真实数据集上验证了该模型的有效性,证明其能有效地利用用户高阶关联性短期兴趣和结合兴趣点类别的周期偏好,更准确地预测用户最有可能访问的下一个兴趣点.展开更多
随着移动社交平台的发展,基于位置的社交网络服务(Location-Based Social Network,LBSN)已进入人们的视野。在LBSN中,根据用户的签到数据进行兴趣点(Point-of-Interest,POI)推荐是近年来研究的热点问题。提出一种基于极限学习机(Extreme...随着移动社交平台的发展,基于位置的社交网络服务(Location-Based Social Network,LBSN)已进入人们的视野。在LBSN中,根据用户的签到数据进行兴趣点(Point-of-Interest,POI)推荐是近年来研究的热点问题。提出一种基于极限学习机(Extreme Learning Machine,ELM)的POI推荐算法,提取用户的个人偏好、朋友偏好、类型偏好、流行度偏好等特征,利用ELM提供的分类方法,使用上述特征向量集合训练ELM分类器,最终根据分类结果向用户推荐POI。本文使用Foursquare和Twitter数据集的实验结果表明,该方法在精确率和效率方面均有所提高。展开更多
文摘下一个兴趣点推荐是推荐算法领域的热点,旨在为用户推荐适合的下一地点。较新的研究通过图和序列方法模拟用户与POI的交互以及POI之间转换关系,性能得到显著提升。然而,现有模型仍然存在需要解决的问题。针对现有的下一个兴趣点推荐模型的局限性,特别是如何充分捕捉User-POI交互图上全局和局部信息,以及缓解图神经网络的过平滑特性导致图上信息丢失的问题,提出了基于graph Transformer的多编码模型(multi-coding network based on GT model)对下一个兴趣点进行推荐。首先,从位置和结构的视角上联合对user-POI交互图上进行全局、局部以及相对信息进行编码;然后,将编码后生成的图嵌入通过graph Transformer网络层更新图上节点与边信息;最后通过MLP网络层生成预测;最终,MCGT在Gowalla和TKY两个公开数据集进行对比实验。结果表明,在Gowalla数据集上recall和NDCG指标至少有3.79%的提升,在TKY数据集上recall和NDCG指标至少有2.5%的提升,证明了MCGT设计的合理性与有效性。
文摘兴趣点(Point-Of-Interest,POI)推荐是基于位置的社交网络(Location-based Social Networks,LBSNs)研究中最重要的任务之一。为了解决POI推荐中的空间稀疏性问题,提出一种用于位置推荐的长短期偏好时空注意力网络(LSAN)。首先,构建了签到序列的时空关系矩阵,使用多头注意力机制从中提取非连续签到和非相邻位置中的时空相关性,缓解签到数据稀疏所带来的困难。其次,在模型中设置用户短期偏好和长期偏好提取模块,自适应的将二者结合在一起,考虑了用户偏好对用户决策影响。最后,在Foursquare数据集上进行测试,并与其它模型结果进行对比,证实了提出的LSAN模型结果最优。研究表明LSAN模型能够获得最佳的推荐效果,为POI推荐提供新思路。
文摘为了提高兴趣点(point of interest,POI)推荐的准确性和个性化,提升用户对推荐结果的满意度,针对不同活跃度用户的特点,提出一种融合用户活跃度的上下文感知兴趣点推荐算法(A POI recommendation algorithm that integrates geographical,categorical,and temporal factors,while simultaneously considering user activity),简称AU-GCTRS。首先,为缓解数据稀疏性和冷启动问题,引入多维上下文信息;其次,通过挖掘用户签到频率、签到兴趣点数量和签到时间,将用户划分为不同活跃度的群体;最后,综合用户活跃度与上下文分数,将得分高的前K个兴趣点推荐给用户。在真实数据集上进行实验表明,AU-GCTRS算法比其他流行算法更有效地缓解了数据稀疏性和冷启动问题,提高了推荐准确率和召回率。
文摘随着基于位置的社交网络在日常生活中的广泛应用,有效提取用户的隐藏兴趣和行为序列模式并向用户提供满足其个性化需求的下一个兴趣点推荐服务成为推荐领域的热点问题之一.针对下一个兴趣点推荐中的用户偏好挖掘问题,提出基于用户兴趣点类别周期性偏好和短期兴趣相结合的兴趣点推荐模型(Combining Periodic and Spatio-Temporal Intervals'Network,CPSTIN).该模型将用户的签到记录按小时时段模式嵌入时间窗口并使用多头自注意力机制提取用户结合用户兴趣点类别的周期性偏好;同时,将非连续时空间隔信息送入可学习矩阵,使用线性插值法提取用户基于高阶关联性的短期兴趣.最后,在两个真实数据集上验证了该模型的有效性,证明其能有效地利用用户高阶关联性短期兴趣和结合兴趣点类别的周期偏好,更准确地预测用户最有可能访问的下一个兴趣点.
文摘随着移动社交平台的发展,基于位置的社交网络服务(Location-Based Social Network,LBSN)已进入人们的视野。在LBSN中,根据用户的签到数据进行兴趣点(Point-of-Interest,POI)推荐是近年来研究的热点问题。提出一种基于极限学习机(Extreme Learning Machine,ELM)的POI推荐算法,提取用户的个人偏好、朋友偏好、类型偏好、流行度偏好等特征,利用ELM提供的分类方法,使用上述特征向量集合训练ELM分类器,最终根据分类结果向用户推荐POI。本文使用Foursquare和Twitter数据集的实验结果表明,该方法在精确率和效率方面均有所提高。