针对我国作物品种种类多,资源信息规范性差,模型训练精度低等问题,本文以小麦、水稻、玉米、大豆、棉花、花生、油菜7种作物为对象,以品种、形态、产量和品质等参数为指标,构建了83个品种实体,采用人工标注方法,通过融合对抗训练技术,...针对我国作物品种种类多,资源信息规范性差,模型训练精度低等问题,本文以小麦、水稻、玉米、大豆、棉花、花生、油菜7种作物为对象,以品种、形态、产量和品质等参数为指标,构建了83个品种实体,采用人工标注方法,通过融合对抗训练技术,提出了农作物品种信息抽取4层网络模型(BERT-PGD-BiLSTM-CRF)。模型基于深层双向Transformer构建的BERT(Bidirectional encoder representation from transformers)模型作为预训练模型获取字词语义表示,使用PGD(Projected gradient descent)对抗训练方法为样本增加扰动,提高模型鲁棒性和泛化性,利用双向长短期记忆网络(Bidirectional long short-term memory, BiLSTM)学习长距离文本信息,结合条件随机场(Conditional random field, CRF)学习标签约束信息。对比18个不同信息抽取模型的训练效果,结果表明,本研究提出的BERT-PGD-BiLSTM-CRF模型精确率为95.4%、召回率为97.0%、F1值为96.2%,说明利用对抗训练技术的BERT-PGD-BiLSTM-CRF模型能够有效对作物品种信息进行抽取,同时也为农业信息抽取提供了技术参考。展开更多
文摘针对我国作物品种种类多,资源信息规范性差,模型训练精度低等问题,本文以小麦、水稻、玉米、大豆、棉花、花生、油菜7种作物为对象,以品种、形态、产量和品质等参数为指标,构建了83个品种实体,采用人工标注方法,通过融合对抗训练技术,提出了农作物品种信息抽取4层网络模型(BERT-PGD-BiLSTM-CRF)。模型基于深层双向Transformer构建的BERT(Bidirectional encoder representation from transformers)模型作为预训练模型获取字词语义表示,使用PGD(Projected gradient descent)对抗训练方法为样本增加扰动,提高模型鲁棒性和泛化性,利用双向长短期记忆网络(Bidirectional long short-term memory, BiLSTM)学习长距离文本信息,结合条件随机场(Conditional random field, CRF)学习标签约束信息。对比18个不同信息抽取模型的训练效果,结果表明,本研究提出的BERT-PGD-BiLSTM-CRF模型精确率为95.4%、召回率为97.0%、F1值为96.2%,说明利用对抗训练技术的BERT-PGD-BiLSTM-CRF模型能够有效对作物品种信息进行抽取,同时也为农业信息抽取提供了技术参考。