大量可再生能源接入电网给配电网的控制带来了巨大挑战,传统配电网的被动控制已经不能满足对配电网能量双向流动的实时控制,发展研究主动配电网分层分布控制能实现对可再生间歇式能源的有效消纳及控制。文中将主动配电网(ADN)划分成3层...大量可再生能源接入电网给配电网的控制带来了巨大挑战,传统配电网的被动控制已经不能满足对配电网能量双向流动的实时控制,发展研究主动配电网分层分布控制能实现对可再生间歇式能源的有效消纳及控制。文中将主动配电网(ADN)划分成3层控制结构,根据全局优化及馈线控制误差(feeder control error,FCE)提出定交换功率控制、区域协同控制、区域自治控制3种模式及它们之间进行主动切换的条件、方法。最后通过MATLAB/Simulink建立一个简单的ADN配电系统模型进行仿真,算例仿真结果验证了这3种模式之间切换的正确性及有效性。展开更多
文摘大量可再生能源接入电网给配电网的控制带来了巨大挑战,传统配电网的被动控制已经不能满足对配电网能量双向流动的实时控制,发展研究主动配电网分层分布控制能实现对可再生间歇式能源的有效消纳及控制。文中将主动配电网(ADN)划分成3层控制结构,根据全局优化及馈线控制误差(feeder control error,FCE)提出定交换功率控制、区域协同控制、区域自治控制3种模式及它们之间进行主动切换的条件、方法。最后通过MATLAB/Simulink建立一个简单的ADN配电系统模型进行仿真,算例仿真结果验证了这3种模式之间切换的正确性及有效性。