期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
未知互耦影响下的多阵直接定位:基于子空间数据融合与降维搜索 被引量:4
1
作者 张小飞 李宝宝 +1 位作者 曾浩威 李建峰 《数据采集与处理》 CSCD 北大核心 2022年第6期1208-1217,共10页
为了解决子空间数据融合(Subspace data fusion,SDF)算法用于未知互耦影响下的分布式多阵列定位时定位精度低的问题,本文结合降维搜索思想提出了一种降互耦维度的子空间数据融合(Reduced mutual coupling dimension subspace data fusio... 为了解决子空间数据融合(Subspace data fusion,SDF)算法用于未知互耦影响下的分布式多阵列定位时定位精度低的问题,本文结合降维搜索思想提出了一种降互耦维度的子空间数据融合(Reduced mutual coupling dimension subspace data fusion,RMCD⁃SDF)方法。该方法首先将互耦误差模型引入SDF算法,使其适应于天线阵列受到未知互耦误差影响的场景。在此基础上,为了降低同时搜索所有未知参数带来的超高计算复杂度,本文引入降维搜索思想并构造了RMCD⁃SDF算法谱函数。仿真结果显示,RMCD⁃SDF算法的定位性能在阵列受到未知互耦影响的场景下具有优势,与现有算法相比计算复杂度接近,但是具有更高的定位精度。在10 dB信噪比下本文算法的定位均方根误差相比经典的SDF算法降低了8.67 dB。 展开更多
关键词 分布式多阵列 未知互耦 降维 直接定位
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部