In the coherent thermal state representation we introduce thermal Wigner operator and find that it is'squeezed' under the thermal transformation. The thermal Wigner operator provides us with a new direct and n...In the coherent thermal state representation we introduce thermal Wigner operator and find that it is'squeezed' under the thermal transformation. The thermal Wigner operator provides us with a new direct and neatapproach for deriving Wigner functions of thermal states.展开更多
The generalized quantum master equation(GQME)provides a general and exact approach for simulating the reduced dynamics in open quantum systems where a quantum system is embedded in a quantum environment.Dynamics of op...The generalized quantum master equation(GQME)provides a general and exact approach for simulating the reduced dynamics in open quantum systems where a quantum system is embedded in a quantum environment.Dynamics of open quantum systems is important in excitation energy,charge,and quantum coherence transfer as well as reactive photochemistry.The system is usually chosen to be the interested degrees of freedom such as the electronicstates in light-harvesting molecules or tagged vibrational modes in a condensed-phase system.The environment is also called the bath,whose influence on the system has to be considered,and for instance can be described by the GQME formalisms using the projection operator technique.In this review,we provide a heuristic description of the development of two canonical forms of GQME,namely the time-convoluted Nakajima-Zwanzig form(NZ-GQME)and the time-convolutionless form(TCL-GQME).In the more popular NZ-GQME form,the memory kernel serves as the essential part that reflects the non-Markovian and non-perturbative effects,which gives formally exact dynamics of the reduced density matrix.We summarize several schemes to express the projection-based memory kernel of NZ-GQME in terms of projection-free time correlation function inputs that contain molecular information.In particular,the recently proposed modified GQME approach based on NZ-GQME partitions the Hamiltonian into a more general diagonal and off-diagonal parts.The projection-free inputs in the above-mentioned schemes expressed in terms of different system-dependent time correlation functions can be calculated via numerically exact or approximate dynamical methods.We hope this contribution would help lower the barrier of understanding the theoretical pillars for GQME-based quantum dynamics methods and also envisage that their combination with the quantum computing techniques will pave the way for solving complex problems related to quantum dynamics and quantum information that are currently intractable even with today’s state-of-the-art classical supercomputers.展开更多
In quantum mechanics theory one of the basic operator orderings is Q-P and P-Q ordering,where Q and P are the coordinate operator and the momentum operator,respectively.We derive some new fundamental operator identiti...In quantum mechanics theory one of the basic operator orderings is Q-P and P-Q ordering,where Q and P are the coordinate operator and the momentum operator,respectively.We derive some new fundamental operator identities about their mutual reordering.The technique of integration within Q-P ordering and P-Q ordering is introduced.The Q-P ordered and P-Q ordered formulas of the Wigner operator are also deduced which makes arranging the operators in either Q-P or P-Q ordering much more convenient.展开更多
文摘In the coherent thermal state representation we introduce thermal Wigner operator and find that it is'squeezed' under the thermal transformation. The thermal Wigner operator provides us with a new direct and neatapproach for deriving Wigner functions of thermal states.
基金support from NYU Shanghai,the National Natural Science Foundation of China(No.21903054)the Hefei National Laboratory for Physical Sciences at the Microscale(No.KF2020008)+1 种基金the Shanghai Sailing Program(No.19YF1435600)the Program for Eastern Young Scholar at Shanghai Institutions of Higher Learning。
文摘The generalized quantum master equation(GQME)provides a general and exact approach for simulating the reduced dynamics in open quantum systems where a quantum system is embedded in a quantum environment.Dynamics of open quantum systems is important in excitation energy,charge,and quantum coherence transfer as well as reactive photochemistry.The system is usually chosen to be the interested degrees of freedom such as the electronicstates in light-harvesting molecules or tagged vibrational modes in a condensed-phase system.The environment is also called the bath,whose influence on the system has to be considered,and for instance can be described by the GQME formalisms using the projection operator technique.In this review,we provide a heuristic description of the development of two canonical forms of GQME,namely the time-convoluted Nakajima-Zwanzig form(NZ-GQME)and the time-convolutionless form(TCL-GQME).In the more popular NZ-GQME form,the memory kernel serves as the essential part that reflects the non-Markovian and non-perturbative effects,which gives formally exact dynamics of the reduced density matrix.We summarize several schemes to express the projection-based memory kernel of NZ-GQME in terms of projection-free time correlation function inputs that contain molecular information.In particular,the recently proposed modified GQME approach based on NZ-GQME partitions the Hamiltonian into a more general diagonal and off-diagonal parts.The projection-free inputs in the above-mentioned schemes expressed in terms of different system-dependent time correlation functions can be calculated via numerically exact or approximate dynamical methods.We hope this contribution would help lower the barrier of understanding the theoretical pillars for GQME-based quantum dynamics methods and also envisage that their combination with the quantum computing techniques will pave the way for solving complex problems related to quantum dynamics and quantum information that are currently intractable even with today’s state-of-the-art classical supercomputers.
基金supported by the National Natural Science Foundation of China (Grant No.11175113)
文摘In quantum mechanics theory one of the basic operator orderings is Q-P and P-Q ordering,where Q and P are the coordinate operator and the momentum operator,respectively.We derive some new fundamental operator identities about their mutual reordering.The technique of integration within Q-P ordering and P-Q ordering is introduced.The Q-P ordered and P-Q ordered formulas of the Wigner operator are also deduced which makes arranging the operators in either Q-P or P-Q ordering much more convenient.