期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于非达西流模型的煤矿突水渗流机制数值模拟 被引量:1
1
作者 杨斌 杨天鸿 +1 位作者 师文豪 杨鑫 《金属矿山》 CAS 北大核心 2017年第6期180-185,共6页
突水是威胁煤矿安全生产的重大灾害之一。以义安煤矿704工作面突水事故为例,采用非线性渗流模型模拟突水瞬态流动全过程,探讨突水过程中流速和压力的变化规律,揭示矿山突水全过程的流态转捩机制。研究表明:义安煤矿突水达到最大涌水量时... 突水是威胁煤矿安全生产的重大灾害之一。以义安煤矿704工作面突水事故为例,采用非线性渗流模型模拟突水瞬态流动全过程,探讨突水过程中流速和压力的变化规律,揭示矿山突水全过程的流态转捩机制。研究表明:义安煤矿突水达到最大涌水量时,含水层的压力在0.2~0.3 MPa之间,突水实际上是一个降压加速的过程,含水层压力骤降是突水发生的前兆,且突水通道进出口压力和流速是动态变化的,3个流场有机地组成一个不可分割的整体。撑子面处突水流体涡旋是层流向紊流过渡的空间响应,表明矿山突水存在流态转捩过程。通过进一步研究发现突水通道的导水性能越强,发生突水灾害时危害越大。研究结果可为反演确定合理的工程渗流力学参数和突水通道的几何结构提供参考。 展开更多
关键词 煤矿 高速非线性流 突水 Forchheimer方程 动力学统一性
下载PDF
Lie Symmetry and Conserved Quantities for Nonholonomic Vacco Dynamical Systems 被引量:3
2
作者 DING Ning FANG Jian-Hui 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第2X期265-268,共4页
In this paper the Lie symmetry and conserved quantities for nonholonomic Vacco dynamical systems are studied. The determining equation of the Lie symmetry for the system is given. The general Hojman conserved quantity... In this paper the Lie symmetry and conserved quantities for nonholonomic Vacco dynamical systems are studied. The determining equation of the Lie symmetry for the system is given. The general Hojman conserved quantity and the Lutzky conserved quantity deduced from the symmetry are obtained. 展开更多
关键词 Vacco dynamical system Lie symmetry general Hojman conserved quantity Lutzky conserved quantity
下载PDF
Convergence proof of the DSMC method and the Gas-Kinetic Unified Algorithm for the Boltzmann equation 被引量:12
3
作者 LI Zhi Hui FANG Ming +1 位作者 JIANG XinYu WU JunLin 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2013年第2期404-417,共14页
This paper investigates the convergence proof of the Direct Simulation Monte Carlo(DSMC) method and the Gas-Kinetic Unified Algorithm in simulating the Boltzmann equation.It can be shown that the particle velocity dis... This paper investigates the convergence proof of the Direct Simulation Monte Carlo(DSMC) method and the Gas-Kinetic Unified Algorithm in simulating the Boltzmann equation.It can be shown that the particle velocity distribution function obtained by the DSMC method converges to a modified form of the Boltzmann equation,which is the equation of the gas-kinetic unified algorithm to directly solve the molecular velocity distribution function.Their convergence is derived through mathematical treatment.The collision frequency is presented using various molecular models and the local equilibrium distribution function is obtained by Enskog expansion using the converged equation of the DSMC method.These two expressions agree with those used in the unified algorithm.Numerical validation of the converging consistency between these two approaches is illustrated by simulating the pressure driven Poiseuille flow in the slip transition flow regime and the two-dimensional and three-dimensional flows around a circular cylinder and spherical-cone reentry body covering the whole flow regimes from low speed micro-channel flow to high speed non-equilibrium aerothermodynamics. 展开更多
关键词 Boltzmann equation DSMC method Gas-Kinetic Unified Algorithm velocity distribution function convergence aerothermodynamics covering flow regimes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部