The equation of state(EOS)for square-well chain fluid with variable range(SWCF-VR) developed in our previous work based on statistical mechanical theory for chemical association is employed for the correlations of sur...The equation of state(EOS)for square-well chain fluid with variable range(SWCF-VR) developed in our previous work based on statistical mechanical theory for chemical association is employed for the correlations of surface tension and viscosity of common fluids and ionic liquids(ILs).A model of surface tension for multi-component mixtures is presented by combining the SWCF-VR EOS and the scaled particle theory and used to produce the surface tension of binary and ternary mixtures.The predicted surface tensions are in excellent agreement with the experimental data with an overall average absolute relative deviation(AAD)of 0.36%.A method for the calculation of dynamic viscosity of common fluids and ILs at high pressure is presented by combining Eyring’s rate theory of viscosity and the SWCF-VR EOS.The calculated viscosities are in good agreement with the experimental data with the overall AAD of 1.44% for 14 fluids in 84 cases.The salient feature is that the molecular parameters used in these models are self-consistent and can be applied to calculate different thermodynamic properties such as pVT,vapor-liquid equilibrium,caloric properties,surface tension,and viscosity.展开更多
Rheological behavior of this article presents rapeseed oil. Dynamic viscosity of rapeseed oil was determined at temperatures between 40 ℃-90 ℃ and shear rates ranging from 3.3-120 s1. All types of oils studied Bingh...Rheological behavior of this article presents rapeseed oil. Dynamic viscosity of rapeseed oil was determined at temperatures between 40 ℃-90 ℃ and shear rates ranging from 3.3-120 s1. All types of oils studied Bingham fluid behavior in the temperature range from 313-363 K. Correlation coefficients have similar values to one for all oils studied.展开更多
Densities(ρ) and dynamic viscosities(η) for three binary mixtures of n-decane with 1-pentanol,1-hexanol and1-heptanol are presented at temperatures from 293.15 to 363.15 K and atmospheric pressure over the entire co...Densities(ρ) and dynamic viscosities(η) for three binary mixtures of n-decane with 1-pentanol,1-hexanol and1-heptanol are presented at temperatures from 293.15 to 363.15 K and atmospheric pressure over the entire composition range.The density and viscosity are measured using a vibrating tube densimeter and a cylindrical Couette type rotating viscometer,respectively.Excess molar volumes(V^E),viscosity deviations(△η) and excess Gibbs energy of activation of viscous flow(△G^(*E)) are calculated from the experimental measurements.Intermolecular and structural interactions are indicated by the sign and magnitude of these properties.Partial molar volumes and infinity dilution molar partial volumes are also calculated for each binary system.These results are correlated using Redlich-Kister type equations.展开更多
The granular dynamic shear strength is the same as that of the static one in nature, as found from numerous experiments and investigations. The shear strength is equal to the sum of the internal frictional force and t...The granular dynamic shear strength is the same as that of the static one in nature, as found from numerous experiments and investigations. The shear strength is equal to the sum of the internal frictional force and the cohesive force. The influences of type, shape, size distribution, pore ratio, moisture content and variation of vibration velocity on the dynamic shear strength of granules were studied. Based on numerous vibration shear experiments, the authors investigate the mechanism of dynamic shear strength in granules in terms of the fundamental principle and the relevant theory of modern tribology.展开更多
Focusing on the speed control problem, this paper presents a study on the stick slip phenomena of cable driven by pipe robot and the critical conditions of stick slip. By dynamics simulation and field experiments, the...Focusing on the speed control problem, this paper presents a study on the stick slip phenomena of cable driven by pipe robot and the critical conditions of stick slip. By dynamics simulation and field experiments, the theoretical analysis has been proved to be practical and valid. The result is of considerable theoretical value in the speed control for pipe robot on receiving and putting line.展开更多
基金Supported by the National Natural Science Foundation of China (20776040 20876041 20736002) the National Basic Research Program of China (2009CB219902)+1 种基金 the Program for Changjiang Scholars and Innovative Research Team in University of China (Grant IRT0721) the 111 Project (Grant B08021) of China
文摘The equation of state(EOS)for square-well chain fluid with variable range(SWCF-VR) developed in our previous work based on statistical mechanical theory for chemical association is employed for the correlations of surface tension and viscosity of common fluids and ionic liquids(ILs).A model of surface tension for multi-component mixtures is presented by combining the SWCF-VR EOS and the scaled particle theory and used to produce the surface tension of binary and ternary mixtures.The predicted surface tensions are in excellent agreement with the experimental data with an overall average absolute relative deviation(AAD)of 0.36%.A method for the calculation of dynamic viscosity of common fluids and ILs at high pressure is presented by combining Eyring’s rate theory of viscosity and the SWCF-VR EOS.The calculated viscosities are in good agreement with the experimental data with the overall AAD of 1.44% for 14 fluids in 84 cases.The salient feature is that the molecular parameters used in these models are self-consistent and can be applied to calculate different thermodynamic properties such as pVT,vapor-liquid equilibrium,caloric properties,surface tension,and viscosity.
文摘Rheological behavior of this article presents rapeseed oil. Dynamic viscosity of rapeseed oil was determined at temperatures between 40 ℃-90 ℃ and shear rates ranging from 3.3-120 s1. All types of oils studied Bingham fluid behavior in the temperature range from 313-363 K. Correlation coefficients have similar values to one for all oils studied.
基金Supported by the National Council of Science and Technology(CONACyT)(SEP-2004-C01-47817)
文摘Densities(ρ) and dynamic viscosities(η) for three binary mixtures of n-decane with 1-pentanol,1-hexanol and1-heptanol are presented at temperatures from 293.15 to 363.15 K and atmospheric pressure over the entire composition range.The density and viscosity are measured using a vibrating tube densimeter and a cylindrical Couette type rotating viscometer,respectively.Excess molar volumes(V^E),viscosity deviations(△η) and excess Gibbs energy of activation of viscous flow(△G^(*E)) are calculated from the experimental measurements.Intermolecular and structural interactions are indicated by the sign and magnitude of these properties.Partial molar volumes and infinity dilution molar partial volumes are also calculated for each binary system.These results are correlated using Redlich-Kister type equations.
基金TheNationalNaturalScienceFoundationofChina (No .5 0 0 74 0 34)
文摘The granular dynamic shear strength is the same as that of the static one in nature, as found from numerous experiments and investigations. The shear strength is equal to the sum of the internal frictional force and the cohesive force. The influences of type, shape, size distribution, pore ratio, moisture content and variation of vibration velocity on the dynamic shear strength of granules were studied. Based on numerous vibration shear experiments, the authors investigate the mechanism of dynamic shear strength in granules in terms of the fundamental principle and the relevant theory of modern tribology.
文摘Focusing on the speed control problem, this paper presents a study on the stick slip phenomena of cable driven by pipe robot and the critical conditions of stick slip. By dynamics simulation and field experiments, the theoretical analysis has been proved to be practical and valid. The result is of considerable theoretical value in the speed control for pipe robot on receiving and putting line.