采用密度泛函理论(DFT)的计算方法,研究了铂催化2-烯炔基苯甲醛水合环化反应的微观机理及化学选择性的根源.计算结果表明,首先炔基被催化活化而发生亲核环化生成吡喃铂中间体;接着吡喃铂中间体与烯烃双键发生[3+2]环加成生成铂-碳卡宾...采用密度泛函理论(DFT)的计算方法,研究了铂催化2-烯炔基苯甲醛水合环化反应的微观机理及化学选择性的根源.计算结果表明,首先炔基被催化活化而发生亲核环化生成吡喃铂中间体;接着吡喃铂中间体与烯烃双键发生[3+2]环加成生成铂-碳卡宾复合物;之后,反应将沿2条路径进行,得到产物3a或4a,其中4a的生成需经两步水分子辅助的质子转移过程.生成产物3a需要克服的活化能垒为146.5 k J/mol;对4a的生成,烯醇式和酮式互变异构是决速步聚,当一个水分子参与反应时,对应的能垒为185.8 k J/mol,当2个和3个水分子参与反应时,能垒分别降低到128.1和64.9 k J/mol.因此,水分子参与催化得到产物4a的路径是有利的.另外,反应的选择性与在异构化过程中水的共催化作用有关.以上结果很好地解释了实验现象,并为铂催化水环化反应提供新的见解.展开更多
Poly(4-vinylpyridinium) perchlorate has been used as a supported,recyclable,environmentally-benign catalyst for the formation of acylals from aliphatic and aromatic aldehydes in good to excellent yields under solvent-...Poly(4-vinylpyridinium) perchlorate has been used as a supported,recyclable,environmentally-benign catalyst for the formation of acylals from aliphatic and aromatic aldehydes in good to excellent yields under solvent-free conditions.Notably,the reaction conditions were tolerant of ketones.This methodology offers several distinct advantages,including its operational simplicity and high product yield,as well as being green in terms of avoiding the use of toxic catalysts and solvents.Furthermore,the catalyst can be recovered and reused several times without any loss in its activity.展开更多
A new method has been developed for the chemoselective acetylation of alcohols with acetic anhy‐dride in the presence of phenols using a novel,recyclable Cu O‐Zn O nanocatalyst.The catalyst was synthesized using the...A new method has been developed for the chemoselective acetylation of alcohols with acetic anhy‐dride in the presence of phenols using a novel,recyclable Cu O‐Zn O nanocatalyst.The catalyst was synthesized using the co‐precipitation method and characterized by N2 adsorption‐desorption,X‐ray diffraction,scanning electron microscopy,transmission electron microscopy and energy dis‐persion scanning analyses.Furthermore,this catalyst could be recycled up to six times without significant loss in its activity.展开更多
基金supported by the National Natural Science Foundation of China(No.21433006)the Provincial Natural Science Foundation of Shandong,China(Nos.ZR2013BM026,2014ZRE27295)~~
文摘采用密度泛函理论(DFT)的计算方法,研究了铂催化2-烯炔基苯甲醛水合环化反应的微观机理及化学选择性的根源.计算结果表明,首先炔基被催化活化而发生亲核环化生成吡喃铂中间体;接着吡喃铂中间体与烯烃双键发生[3+2]环加成生成铂-碳卡宾复合物;之后,反应将沿2条路径进行,得到产物3a或4a,其中4a的生成需经两步水分子辅助的质子转移过程.生成产物3a需要克服的活化能垒为146.5 k J/mol;对4a的生成,烯醇式和酮式互变异构是决速步聚,当一个水分子参与反应时,对应的能垒为185.8 k J/mol,当2个和3个水分子参与反应时,能垒分别降低到128.1和64.9 k J/mol.因此,水分子参与催化得到产物4a的路径是有利的.另外,反应的选择性与在异构化过程中水的共催化作用有关.以上结果很好地解释了实验现象,并为铂催化水环化反应提供新的见解.
文摘Poly(4-vinylpyridinium) perchlorate has been used as a supported,recyclable,environmentally-benign catalyst for the formation of acylals from aliphatic and aromatic aldehydes in good to excellent yields under solvent-free conditions.Notably,the reaction conditions were tolerant of ketones.This methodology offers several distinct advantages,including its operational simplicity and high product yield,as well as being green in terms of avoiding the use of toxic catalysts and solvents.Furthermore,the catalyst can be recovered and reused several times without any loss in its activity.
基金the research council of Behbahan Kha-tam Alanbia University of Technology for supporting this work
文摘A new method has been developed for the chemoselective acetylation of alcohols with acetic anhy‐dride in the presence of phenols using a novel,recyclable Cu O‐Zn O nanocatalyst.The catalyst was synthesized using the co‐precipitation method and characterized by N2 adsorption‐desorption,X‐ray diffraction,scanning electron microscopy,transmission electron microscopy and energy dis‐persion scanning analyses.Furthermore,this catalyst could be recycled up to six times without significant loss in its activity.