【目的】提高松茸粗多糖提取率,探究松茸多糖纯化组分及抗氧化作用。【方法】采用超声波辅助水提醇沉法提取松茸粗多糖,优化提取工艺,使用DEAE-Sepharose Fast Flow离子柱分离纯化粗多糖,采用离子色谱法分析单糖成分,并测定体外抗氧化...【目的】提高松茸粗多糖提取率,探究松茸多糖纯化组分及抗氧化作用。【方法】采用超声波辅助水提醇沉法提取松茸粗多糖,优化提取工艺,使用DEAE-Sepharose Fast Flow离子柱分离纯化粗多糖,采用离子色谱法分析单糖成分,并测定体外抗氧化活性。【结果】最优提取工艺参数为:浸提时间2.25 h,料液比1∶31(g∶mL),浸提温度83.50℃,该条件下多糖提取率为8.67%。松茸粗多糖经分离纯化后收集到3种多糖组分(TMP-1、TMP-2、TMP-3),主要由岩藻糖、盐酸氨基葡萄糖、半乳糖、葡萄糖和甘露糖组成,其中TMP-1存在鼠李糖,TMP-2和TMP-3存在葡萄糖醛酸。松茸粗多糖和3种纯化多糖组分均具有一定的抗氧化活性且存在量效关系,抗氧化能力强弱为:松茸粗多糖>TMP-2>TMP-3>TMP-1。【结论】松茸多糖有一定的抗氧化活性,且松茸粗多糖效果最好,分离纯化后的多糖组分抗氧化活性有所降低。本研究为松茸多糖的开发利用提供了理论基础,对其功能食品研发具有重要意义。展开更多
为确定樱桃李多糖的最佳提取工艺,比较热水提取法、酶解法和超声辅助法对多糖提取率的影响,通过扫描电镜(scanning electron microscope,SEM)观察不同提取方式所得樱桃李纯化多糖(Prunus cerasifera pure polysaccharides,PCPPs)的微观...为确定樱桃李多糖的最佳提取工艺,比较热水提取法、酶解法和超声辅助法对多糖提取率的影响,通过扫描电镜(scanning electron microscope,SEM)观察不同提取方式所得樱桃李纯化多糖(Prunus cerasifera pure polysaccharides,PCPPs)的微观结构。在正交试验确定复合酶质量比的基础上,采用单因素结合正交试验优化复合酶法提取樱桃李粗多糖(Prunus cerasifera crude polysaccharides,PCCPs)的最佳工艺为纤维素酶添加量2.0%、果胶酶添加量2.5%、料液比1∶35(g/mL)、酶解时间2.0 h、酶解温度55℃。以种植的紫果、红果和野生的紫果、红果为原料,将最佳提取工艺下得到的PCCPs经纯化、水解、衍生化后,采用液相色谱(high-performance liquid chromatography,HPLC)分析单糖组成。结果表明,4种樱桃李多糖均由甘露糖、葡萄糖醛酸、鼠李糖、葡萄糖、半乳糖和阿拉伯糖6种单糖组成,但含量存在显著差异(P<0.05)。体外抗氧化试验表明,4种多糖均具有一定的抗氧化能力,其中种植紫果的抗氧化活性最强,对DPPH自由基和ABTS+自由基清除的IC_(50)值分别为0.04 mg/mL和0.21 mg/mL。展开更多
采用柱前衍生化高效液相色谱法,对罗望子胶中主要单糖组分进行检测。选用Diamonsil-plus C 18-A^(*)色谱柱,用磷酸盐缓冲液-乙腈溶液流动相进行等度洗脱,流速设置1.0 mL/min,柱温35℃,进样量5μL,检测波长245 nm。罗望子胶中主要单糖组...采用柱前衍生化高效液相色谱法,对罗望子胶中主要单糖组分进行检测。选用Diamonsil-plus C 18-A^(*)色谱柱,用磷酸盐缓冲液-乙腈溶液流动相进行等度洗脱,流速设置1.0 mL/min,柱温35℃,进样量5μL,检测波长245 nm。罗望子胶中主要单糖组分葡萄糖、木糖和半乳糖的比例为52.05%、20.03%和12.17%。数据在各自浓度范围内线性关系良好(R≥0.9992),加样回收率在100.33%~101.34%之间,RSD小于2.0%,检测限在0.0005~0.0009 mg/L之间。综上,该检测方法适用于罗望子多糖胶中单糖组分测定。展开更多
采用高效液相色谱法测定四种植物多糖的单糖组成。用超声辅助提取大豆、香菇、木耳、枸杞多糖,通过三氟乙酸水解后,用1-苯基-3-甲基-5-吡唑啉酮(PMP)柱前衍生–液相色谱法检测,并选用专属性,精密度,灵敏度,线性范围和加标回收率对此方...采用高效液相色谱法测定四种植物多糖的单糖组成。用超声辅助提取大豆、香菇、木耳、枸杞多糖,通过三氟乙酸水解后,用1-苯基-3-甲基-5-吡唑啉酮(PMP)柱前衍生–液相色谱法检测,并选用专属性,精密度,灵敏度,线性范围和加标回收率对此方法进行验证,最后对大豆、香菇、木耳、枸杞多糖中单糖的组成进行分析。结果表明,待测定的各单糖组分在1.03~550 μg/mL范围内呈良好的线性关系,且各组分分离度大于1.5,检出限大于2.01 μg/mL,定量限大于6.43 μg/mL,精密度与稳定性的相对标准偏差均小于4%,加标回收率在98.0%~101.4%之间,验证结果显示该方法简单快速、准确可靠。通过应用此方法测定大豆、香菇、木耳、枸杞多糖的单糖组成,结果显示大豆多糖属于以半乳糖为主的杂多糖,且半乳糖含量为53.40%;香菇和枸杞多糖属于以葡萄糖为主的杂多糖,所含的葡萄糖含量分别为45.74%和21.07%;木耳多糖属于以D-甘露糖为主的杂多糖,且D-甘露糖含量为18.64%。The monosaccharide compositions of four plant polysaccharides were determined by high performance liquid chromatography (HPLC). Polysaccharides from soybeans, shiitake mushrooms, black fungi, and wolfberries were extracted by ultrasonic assistance. After hydrolysis with trifluoroacetic acid, the samples were detected by pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone (PMP) and HPLC. The method was validated using specificity, precision, sensitivity, linear range, and standard addition recovery rate. Finally, the monosaccharide compositions in polysaccharides from soybeans, shiitake mushrooms, black fungi, and wolfberries were analyzed. The results showed that the monosaccharide components to be determined showed a good linear relationship in the range of 1.03~550 μg/mL, and the resolution of each component was greater than 1.5, the detection limit was greater than 2.01 μg/mL, and the limit of quantification was greater than 6.43 μg/mL. The relative standard deviation of precision and stability was less than 4%, and the recovery of standard addition was between 98.0%~101.4%. The verification results show that the method is simple, rapid, accurate and reliable. The monosaccharide composition of soybean, shiitake mushroom, fungus and medlar polysaccharide was determined by applying this method. The results showed that soybean polysaccharide belongs to galactose-based heteropolysaccharide and the galactose content was 53.40%. The heteropolysaccharide contained 45.74% and 21.07%, respectively;the fungus polysaccharide belonged to D-mannose-based heteropolysaccharide, and the D-mannose content was 18.64%.展开更多
文摘【目的】提高松茸粗多糖提取率,探究松茸多糖纯化组分及抗氧化作用。【方法】采用超声波辅助水提醇沉法提取松茸粗多糖,优化提取工艺,使用DEAE-Sepharose Fast Flow离子柱分离纯化粗多糖,采用离子色谱法分析单糖成分,并测定体外抗氧化活性。【结果】最优提取工艺参数为:浸提时间2.25 h,料液比1∶31(g∶mL),浸提温度83.50℃,该条件下多糖提取率为8.67%。松茸粗多糖经分离纯化后收集到3种多糖组分(TMP-1、TMP-2、TMP-3),主要由岩藻糖、盐酸氨基葡萄糖、半乳糖、葡萄糖和甘露糖组成,其中TMP-1存在鼠李糖,TMP-2和TMP-3存在葡萄糖醛酸。松茸粗多糖和3种纯化多糖组分均具有一定的抗氧化活性且存在量效关系,抗氧化能力强弱为:松茸粗多糖>TMP-2>TMP-3>TMP-1。【结论】松茸多糖有一定的抗氧化活性,且松茸粗多糖效果最好,分离纯化后的多糖组分抗氧化活性有所降低。本研究为松茸多糖的开发利用提供了理论基础,对其功能食品研发具有重要意义。
文摘采用高效液相色谱法测定四种植物多糖的单糖组成。用超声辅助提取大豆、香菇、木耳、枸杞多糖,通过三氟乙酸水解后,用1-苯基-3-甲基-5-吡唑啉酮(PMP)柱前衍生–液相色谱法检测,并选用专属性,精密度,灵敏度,线性范围和加标回收率对此方法进行验证,最后对大豆、香菇、木耳、枸杞多糖中单糖的组成进行分析。结果表明,待测定的各单糖组分在1.03~550 μg/mL范围内呈良好的线性关系,且各组分分离度大于1.5,检出限大于2.01 μg/mL,定量限大于6.43 μg/mL,精密度与稳定性的相对标准偏差均小于4%,加标回收率在98.0%~101.4%之间,验证结果显示该方法简单快速、准确可靠。通过应用此方法测定大豆、香菇、木耳、枸杞多糖的单糖组成,结果显示大豆多糖属于以半乳糖为主的杂多糖,且半乳糖含量为53.40%;香菇和枸杞多糖属于以葡萄糖为主的杂多糖,所含的葡萄糖含量分别为45.74%和21.07%;木耳多糖属于以D-甘露糖为主的杂多糖,且D-甘露糖含量为18.64%。The monosaccharide compositions of four plant polysaccharides were determined by high performance liquid chromatography (HPLC). Polysaccharides from soybeans, shiitake mushrooms, black fungi, and wolfberries were extracted by ultrasonic assistance. After hydrolysis with trifluoroacetic acid, the samples were detected by pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone (PMP) and HPLC. The method was validated using specificity, precision, sensitivity, linear range, and standard addition recovery rate. Finally, the monosaccharide compositions in polysaccharides from soybeans, shiitake mushrooms, black fungi, and wolfberries were analyzed. The results showed that the monosaccharide components to be determined showed a good linear relationship in the range of 1.03~550 μg/mL, and the resolution of each component was greater than 1.5, the detection limit was greater than 2.01 μg/mL, and the limit of quantification was greater than 6.43 μg/mL. The relative standard deviation of precision and stability was less than 4%, and the recovery of standard addition was between 98.0%~101.4%. The verification results show that the method is simple, rapid, accurate and reliable. The monosaccharide composition of soybean, shiitake mushroom, fungus and medlar polysaccharide was determined by applying this method. The results showed that soybean polysaccharide belongs to galactose-based heteropolysaccharide and the galactose content was 53.40%. The heteropolysaccharide contained 45.74% and 21.07%, respectively;the fungus polysaccharide belonged to D-mannose-based heteropolysaccharide, and the D-mannose content was 18.64%.