On line determination of empirical formula for organic compounds with an automatic elemental analyzer and its program design method were investigated. The computational results shews that the reliability of computatio...On line determination of empirical formula for organic compounds with an automatic elemental analyzer and its program design method were investigated. The computational results shews that the reliability of computational results depends on the accuracy of the analytical data and the organic compound itself.展开更多
Coal contains a significant concentration of free radicals as a result of the coalification process. One of the experimental methods sensitive to the presence of radicals is electron spin resonance (ESR), and differ...Coal contains a significant concentration of free radicals as a result of the coalification process. One of the experimental methods sensitive to the presence of radicals is electron spin resonance (ESR), and differences in ESR spectra for different macerals may provide insight into coal-forming processes. In this study, ESR data along with the H/C atomic ratio (to infer the aromatic fraction) are used to characterize coal samples with the aim of assessing a fire-origin for dominant inertinite macerals. A medium rank C bituminous Witbank No. 4 Seam Upper coal (the parent) was density- fractionated to create vitrinite-rich and inertinite-rich samples. The parent sample consists of 42 vol% vitrinite and 49 vol% inertinite. The density-fractionated samples comprise of 81 vol% total vitrinite (dominated by collotelinite and collodetrinite), and 63 vol% total inertinite (dominated by fusinite, semifusinite, and inertodetrinite). The H/C ratio is 0.74 for the inertinite-rich sample, and 0.85 for the vitrinite-rich counterpart, suggesting the former sample is more aromatic. The ESR spectra obtained for the three samples were found to fit best using a Lorentzian distribution. The fit is noticeably better for the aromatic inertinite-rich sample, for which the spectrum is symmetric. This is attributed to pronounced electron mobility and exchange interactions. The higher radical content of the inertinite-rich and parent samples is attributed to the presence of specific inertinite macerals, namely: fusinite, semifusinite, and inertodetrinite. And, owing to the greater radical content of the inertinite-rich sample, the dominant inertinite macerals are interpreted to have formed through charring of plant matter.展开更多
The properties of Al-doped Zn O(AZO) play an important role in the photovoltaic performance of inverted polymer solar cells(PSCs), which is used as electron transport and hole blocking buffer layers. In this work, we ...The properties of Al-doped Zn O(AZO) play an important role in the photovoltaic performance of inverted polymer solar cells(PSCs), which is used as electron transport and hole blocking buffer layers. In this work, we study the effects of Al-doping level in AZO on device performance in detail. Results indicate that the device performance intensely depends on the Al-doping level. The AZO thin films with Al-doping atomic percentage of 1.0% possess the best conductivity. The resulting solar cells show the enhanced short current density and the fill factor(FF) simultaneously, and the power conversion efficiency(PCE) is improved by 74%, which are attributed to the reduced carrier recombination and the optimized charge transport and extraction between AZO and the active layer.展开更多
文摘On line determination of empirical formula for organic compounds with an automatic elemental analyzer and its program design method were investigated. The computational results shews that the reliability of computational results depends on the accuracy of the analytical data and the organic compound itself.
文摘Coal contains a significant concentration of free radicals as a result of the coalification process. One of the experimental methods sensitive to the presence of radicals is electron spin resonance (ESR), and differences in ESR spectra for different macerals may provide insight into coal-forming processes. In this study, ESR data along with the H/C atomic ratio (to infer the aromatic fraction) are used to characterize coal samples with the aim of assessing a fire-origin for dominant inertinite macerals. A medium rank C bituminous Witbank No. 4 Seam Upper coal (the parent) was density- fractionated to create vitrinite-rich and inertinite-rich samples. The parent sample consists of 42 vol% vitrinite and 49 vol% inertinite. The density-fractionated samples comprise of 81 vol% total vitrinite (dominated by collotelinite and collodetrinite), and 63 vol% total inertinite (dominated by fusinite, semifusinite, and inertodetrinite). The H/C ratio is 0.74 for the inertinite-rich sample, and 0.85 for the vitrinite-rich counterpart, suggesting the former sample is more aromatic. The ESR spectra obtained for the three samples were found to fit best using a Lorentzian distribution. The fit is noticeably better for the aromatic inertinite-rich sample, for which the spectrum is symmetric. This is attributed to pronounced electron mobility and exchange interactions. The higher radical content of the inertinite-rich and parent samples is attributed to the presence of specific inertinite macerals, namely: fusinite, semifusinite, and inertodetrinite. And, owing to the greater radical content of the inertinite-rich sample, the dominant inertinite macerals are interpreted to have formed through charring of plant matter.
基金supported by the National Natural Science Foundation of China(No.61377031)the Scientific Research Foundation of Zhejiang Ocean University(No.Q1444)
文摘The properties of Al-doped Zn O(AZO) play an important role in the photovoltaic performance of inverted polymer solar cells(PSCs), which is used as electron transport and hole blocking buffer layers. In this work, we study the effects of Al-doping level in AZO on device performance in detail. Results indicate that the device performance intensely depends on the Al-doping level. The AZO thin films with Al-doping atomic percentage of 1.0% possess the best conductivity. The resulting solar cells show the enhanced short current density and the fill factor(FF) simultaneously, and the power conversion efficiency(PCE) is improved by 74%, which are attributed to the reduced carrier recombination and the optimized charge transport and extraction between AZO and the active layer.