The purpose of the research is to assess the sound absorption performance(SAP)of acoustic metamaterials made of double-layer Nomex honeycomb structures in which a micro-orifice corresponds to a honeycomb unit.For this...The purpose of the research is to assess the sound absorption performance(SAP)of acoustic metamaterials made of double-layer Nomex honeycomb structures in which a micro-orifice corresponds to a honeycomb unit.For this purpose,the influences of structural parameters on the SAP of acoustic metamaterials were investigated by using experimental testing and a validated theoretical model.In addition,the sandwich structure was optimized by the genetic algorithm.The research shows that the panel thickness and micro-orifice diameter mainly affect the second resonant frequency and second peak sound absorption coefficient(SAC)of the structure.The unit cell size is found to influence the first and second resonant frequencies and two peaks of the SAC.An extremely low side-length of the honeycomb core decreases the SAP of the structure for low-frequency noise signals.Additionally,the sandwich structure presents a better SAP when the diameter of micro-orifices on the front micro-perforated panel(MPP)exceeds that of the back MPP.The sandwich structure shows better noise reduction performance after the optimization aiming at the noise frequency outside trains.展开更多
The high-temperature acoustic absorption performance of porous titanium fiber material was investigated in terms of sample thickness, porosity, temperature, air-cavity thickness and double-layer structure arrangement....The high-temperature acoustic absorption performance of porous titanium fiber material was investigated in terms of sample thickness, porosity, temperature, air-cavity thickness and double-layer structure arrangement. The effects on absorption coefficient were systematically assessed. The results show that the sound absorption performance is improved by increasing the sample porosity and/or thickness, and/or increasing the air-cavity thickness. Meanwhile, increasing the temperature gives better acoustic absorption performance in the low frequency range but also lowers the performance in the high frequency range, while double-layer structure enables better acoustic absorption performance.展开更多
In order to using power sound wave increase permeability of coal, rules of attenuation of sound wave in coal should be studied. In this paper, characteristic and mechanism of attenuation of sound wave in coal was rese...In order to using power sound wave increase permeability of coal, rules of attenuation of sound wave in coal should be studied. In this paper, characteristic and mechanism of attenuation of sound wave in coal was researched according to acoustic theory and attenuation coefficients was estimated by acoustic parameter of coal. The research results show that the main attenuation mechanism of sound wave in coal is absorption attenuation and scattering attenuation. The absorption attenuation includes viscous absorption, thermal conduction absorption and relaxation absorption. Attenuation coefficient of sound wave in gaseous coal is 38.5 Np/m. Researches on attenuation characteristic of sound wave will provide the theoretical basis for power sound wave improving permeability of coal and accelerating desorption of coal bed gas.展开更多
Because of the former gas chemistry examination method defects, tunable diode laser absorption spectrum technology (TDLAS) was used. It used an isolated absorption spectrum of the gas molecule to measure the gas abs...Because of the former gas chemistry examination method defects, tunable diode laser absorption spectrum technology (TDLAS) was used. It used an isolated absorption spectrum of the gas molecule to measure the gas absorption spectrum in order to distinguish the gas conveniently. The second harmonic (20 was measured in this system. Due to the fact which the harmonious signal is proportional to the concentration of the absorption gas, the gas concentration may be obtained through examining harmonious signal. The theoretical analysis and the experimental result indicate that under the same level of pressure, survey with the signal-to-noise ratio(SNR) of 2fsignal increases the accuracy by one order of magnitude and may reach 10 ^-3 and the sensitivity may reach the 10^-6 level compared to that of direct absorption. 5% methane density and a 30 cm absorption cell were used in the experiment. It has several advantages including high sensitivity, best resolution, and faster response and so on. The gas concentration monitoring of coal mine may be accomplished.展开更多
基金Project(51775558)supported by the National Natural Science Foundation of ChinaProject(2019 JJ 30034)supported by the Natural Science Foundation for Excellent Youth Scholars of Hunan Province,ChinaProject(20181053303 gg)supported by the Training Objects of Young-Middle-Aged Backbone Teacher in Ordinary Universities of Hunan Province,China。
文摘The purpose of the research is to assess the sound absorption performance(SAP)of acoustic metamaterials made of double-layer Nomex honeycomb structures in which a micro-orifice corresponds to a honeycomb unit.For this purpose,the influences of structural parameters on the SAP of acoustic metamaterials were investigated by using experimental testing and a validated theoretical model.In addition,the sandwich structure was optimized by the genetic algorithm.The research shows that the panel thickness and micro-orifice diameter mainly affect the second resonant frequency and second peak sound absorption coefficient(SAC)of the structure.The unit cell size is found to influence the first and second resonant frequencies and two peaks of the SAC.An extremely low side-length of the honeycomb core decreases the SAP of the structure for low-frequency noise signals.Additionally,the sandwich structure presents a better SAP when the diameter of micro-orifices on the front micro-perforated panel(MPP)exceeds that of the back MPP.The sandwich structure shows better noise reduction performance after the optimization aiming at the noise frequency outside trains.
基金Projects(51671152,51304153)supported by the National Natural Science Foundation of China
文摘The high-temperature acoustic absorption performance of porous titanium fiber material was investigated in terms of sample thickness, porosity, temperature, air-cavity thickness and double-layer structure arrangement. The effects on absorption coefficient were systematically assessed. The results show that the sound absorption performance is improved by increasing the sample porosity and/or thickness, and/or increasing the air-cavity thickness. Meanwhile, increasing the temperature gives better acoustic absorption performance in the low frequency range but also lowers the performance in the high frequency range, while double-layer structure enables better acoustic absorption performance.
文摘In order to using power sound wave increase permeability of coal, rules of attenuation of sound wave in coal should be studied. In this paper, characteristic and mechanism of attenuation of sound wave in coal was researched according to acoustic theory and attenuation coefficients was estimated by acoustic parameter of coal. The research results show that the main attenuation mechanism of sound wave in coal is absorption attenuation and scattering attenuation. The absorption attenuation includes viscous absorption, thermal conduction absorption and relaxation absorption. Attenuation coefficient of sound wave in gaseous coal is 38.5 Np/m. Researches on attenuation characteristic of sound wave will provide the theoretical basis for power sound wave improving permeability of coal and accelerating desorption of coal bed gas.
基金Supported by National Natural Science Foundation of China (50574005) Natural Science Foundation of Education Department of Anhui, China (2005KJ081)
文摘Because of the former gas chemistry examination method defects, tunable diode laser absorption spectrum technology (TDLAS) was used. It used an isolated absorption spectrum of the gas molecule to measure the gas absorption spectrum in order to distinguish the gas conveniently. The second harmonic (20 was measured in this system. Due to the fact which the harmonious signal is proportional to the concentration of the absorption gas, the gas concentration may be obtained through examining harmonious signal. The theoretical analysis and the experimental result indicate that under the same level of pressure, survey with the signal-to-noise ratio(SNR) of 2fsignal increases the accuracy by one order of magnitude and may reach 10 ^-3 and the sensitivity may reach the 10^-6 level compared to that of direct absorption. 5% methane density and a 30 cm absorption cell were used in the experiment. It has several advantages including high sensitivity, best resolution, and faster response and so on. The gas concentration monitoring of coal mine may be accomplished.