针对传统距离保护方案抗过渡电阻能力差的问题,提出了一种基于阻抗复数平面的自适应距离保护方案。首先,利用保护安装处负序电流与故障点电流间的相位关系,计算过渡电阻引起的故障附加阻抗角;再根据测量阻抗、故障附加阻抗和有效故障阻...针对传统距离保护方案抗过渡电阻能力差的问题,提出了一种基于阻抗复数平面的自适应距离保护方案。首先,利用保护安装处负序电流与故障点电流间的相位关系,计算过渡电阻引起的故障附加阻抗角;再根据测量阻抗、故障附加阻抗和有效故障阻抗在阻抗复数平面上的几何分布关系,求解故障点到保护安装处的有效故障阻抗;在此基础上,构造了自适应四边形阻抗继电器动作方程。基于实时数字仿真(real time digital simulator,RTDS)平台的仿真结果表明,所提方案适用于阶段式距离保护,且不受故障类型的影响;与传统距离保护方案相比,具备更强的抗过渡电阻能力,可有效解决过渡电阻引起的距离保护超越或拒动问题。展开更多
In this note, we consider power series f w(z)=∑∞n=0a ne iw n z nwhere moduli a n of the coefficients are given but the argument α n are random. We discuss the conditions of f w is in α_ Bloch space ...In this note, we consider power series f w(z)=∑∞n=0a ne iw n z nwhere moduli a n of the coefficients are given but the argument α n are random. We discuss the conditions of f w is in α_ Bloch space and little α_ Bloch space. Our results generalize Anderson, Clunie and Pommerenke's.展开更多
This paper investigate the uniqueness problems for meromorphic functions that share three values CM and proves a uniqueness theorem on this topic which can be used to improve some previous related results.
In this paper, we prove that the control function of the dilatation function of Beurling-Ahlfors extension is convex. Using the quasi-symmetric function ρ, we get a relatively sharp estimate of the dilatation functio...In this paper, we prove that the control function of the dilatation function of Beurling-Ahlfors extension is convex. Using the quasi-symmetric function ρ, we get a relatively sharp estimate of the dilatation function: D(x,y)≤ 17/32 (ρ(x, y) + 1) (ρ(x + y/2, y/2) +ρ(x - y/2, y/2) +2) , which improves the results before. We also show that the above result is asymptotically precise.展开更多
文摘针对传统距离保护方案抗过渡电阻能力差的问题,提出了一种基于阻抗复数平面的自适应距离保护方案。首先,利用保护安装处负序电流与故障点电流间的相位关系,计算过渡电阻引起的故障附加阻抗角;再根据测量阻抗、故障附加阻抗和有效故障阻抗在阻抗复数平面上的几何分布关系,求解故障点到保护安装处的有效故障阻抗;在此基础上,构造了自适应四边形阻抗继电器动作方程。基于实时数字仿真(real time digital simulator,RTDS)平台的仿真结果表明,所提方案适用于阶段式距离保护,且不受故障类型的影响;与传统距离保护方案相比,具备更强的抗过渡电阻能力,可有效解决过渡电阻引起的距离保护超越或拒动问题。
文摘In this note, we consider power series f w(z)=∑∞n=0a ne iw n z nwhere moduli a n of the coefficients are given but the argument α n are random. We discuss the conditions of f w is in α_ Bloch space and little α_ Bloch space. Our results generalize Anderson, Clunie and Pommerenke's.
基金Supported by the NSF of China(10371065)Supported by the NSF of Zhejiang Province (M103006)
文摘This paper investigate the uniqueness problems for meromorphic functions that share three values CM and proves a uniqueness theorem on this topic which can be used to improve some previous related results.
基金Supported by the National Natural Science Foundation of China(10271077)Supported by the Educational Department of Zhejiang Province Natural Science Project(20030768)
文摘In this paper, we prove that the control function of the dilatation function of Beurling-Ahlfors extension is convex. Using the quasi-symmetric function ρ, we get a relatively sharp estimate of the dilatation function: D(x,y)≤ 17/32 (ρ(x, y) + 1) (ρ(x + y/2, y/2) +ρ(x - y/2, y/2) +2) , which improves the results before. We also show that the above result is asymptotically precise.