Aerosol optical depth(AOD)and fine particulate matter with a diameter of less than or equal to 2.5μm(PM_(2.5))play crucial roles in air quality,human health,and climate change.However,the complex correlation of AOD–...Aerosol optical depth(AOD)and fine particulate matter with a diameter of less than or equal to 2.5μm(PM_(2.5))play crucial roles in air quality,human health,and climate change.However,the complex correlation of AOD–PM_(2.5)and the limitations of existing algorithms pose a significant challenge in realizing the accurate joint retrieval of these two parameters at the same location.On this point,a multi-task learning(MTL)model,which enables the joint retrieval of PM_(2.5)concentration and AOD,is proposed and applied on the top-of-the-atmosphere reflectance data gathered by the Fengyun-4A Advanced Geosynchronous Radiation Imager(FY-4A AGRI),and compared to that of two single-task learning models—namely,Random Forest(RF)and Deep Neural Network(DNN).Specifically,MTL achieves a coefficient of determination(R^(2))of 0.88 and a root-mean-square error(RMSE)of 0.10 in AOD retrieval.In comparison to RF,the R^(2)increases by 0.04,the RMSE decreases by 0.02,and the percentage of retrieval results falling within the expected error range(Within-EE)rises by 5.55%.The R^(2)and RMSE of PM_(2.5)retrieval by MTL are 0.84 and 13.76μg m~(-3)respectively.Compared with RF,the R^(2)increases by 0.06,the RMSE decreases by 4.55μg m~(-3),and the Within-EE increases by 7.28%.Additionally,compared to DNN,MTL shows an increase of 0.01 in R^(2)and a decrease of 0.02 in RMSE in AOD retrieval,with a corresponding increase of 2.89%in Within-EE.For PM_(2.5)retrieval,MTL exhibits an increase of 0.05 in R^(2),a decrease of 1.76μg m~(-3)in RMSE,and an increase of 6.83%in Within-EE.The evaluation suggests that MTL is able to provide simultaneously improved AOD and PM_(2.5)retrievals,demonstrating a significant advantage in efficiently capturing the spatial distribution of PM_(2.5)concentration and AOD.展开更多
As one of the main characteristics of atmospheric pollutants,PM_(2.5) severely affects human health and has received widespread attention in recent years.How to predict the variations of PM_(2.5) concentrations with h...As one of the main characteristics of atmospheric pollutants,PM_(2.5) severely affects human health and has received widespread attention in recent years.How to predict the variations of PM_(2.5) concentrations with high accuracy is an important topic.The PM_(2.5) monitoring stations in Xinjiang Uygur Autonomous Region,China,are unevenly distributed,which makes it challenging to conduct comprehensive analyses and predictions.Therefore,this study primarily addresses the limitations mentioned above and the poor generalization ability of PM_(2.5) concentration prediction models across different monitoring stations.We chose the northern slope of the Tianshan Mountains as the study area and took the January−December in 2019 as the research period.On the basis of data from 21 PM_(2.5) monitoring stations as well as meteorological data(temperature,instantaneous wind speed,and pressure),we developed an improved model,namely GCN−TCN−AR(where GCN is the graph convolution network,TCN is the temporal convolutional network,and AR is the autoregression),for predicting PM_(2.5) concentrations on the northern slope of the Tianshan Mountains.The GCN−TCN−AR model is composed of an improved GCN model,a TCN model,and an AR model.The results revealed that the R2 values predicted by the GCN−TCN−AR model at the four monitoring stations(Urumqi,Wujiaqu,Shihezi,and Changji)were 0.93,0.91,0.93,and 0.92,respectively,and the RMSE(root mean square error)values were 6.85,7.52,7.01,and 7.28μg/m^(3),respectively.The performance of the GCN−TCN−AR model was also compared with the currently neural network models,including the GCN−TCN,GCN,TCN,Support Vector Regression(SVR),and AR.The GCN−TCN−AR outperformed the other current neural network models,with high prediction accuracy and good stability,making it especially suitable for the predictions of PM_(2.5)concentrations.This study revealed the significant spatiotemporal variations of PM_(2.5)concentrations.First,the PM_(2.5) concentrations exhibited clear seasonal fluctuations,with higher levels typically observed in winter and differences presented between months.Second,the spatial distribution analysis revealed that cities such as Urumqi and Wujiaqu have high PM_(2.5) concentrations,with a noticeable geographical clustering of pollutions.Understanding the variations in PM_(2.5) concentrations is highly important for the sustainable development of ecological environment in arid areas.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42030708,42375138,42030608,42105128,42075079)the Opening Foundation of Key Laboratory of Atmospheric Sounding,China Meteorological Administration(CMA),and the CMA Research Center on Meteorological Observation Engineering Technology(Grant No.U2021Z03),and the Opening Foundation of the Key Laboratory of Atmospheric Chemistry,CMA(Grant No.2022B02)。
文摘Aerosol optical depth(AOD)and fine particulate matter with a diameter of less than or equal to 2.5μm(PM_(2.5))play crucial roles in air quality,human health,and climate change.However,the complex correlation of AOD–PM_(2.5)and the limitations of existing algorithms pose a significant challenge in realizing the accurate joint retrieval of these two parameters at the same location.On this point,a multi-task learning(MTL)model,which enables the joint retrieval of PM_(2.5)concentration and AOD,is proposed and applied on the top-of-the-atmosphere reflectance data gathered by the Fengyun-4A Advanced Geosynchronous Radiation Imager(FY-4A AGRI),and compared to that of two single-task learning models—namely,Random Forest(RF)and Deep Neural Network(DNN).Specifically,MTL achieves a coefficient of determination(R^(2))of 0.88 and a root-mean-square error(RMSE)of 0.10 in AOD retrieval.In comparison to RF,the R^(2)increases by 0.04,the RMSE decreases by 0.02,and the percentage of retrieval results falling within the expected error range(Within-EE)rises by 5.55%.The R^(2)and RMSE of PM_(2.5)retrieval by MTL are 0.84 and 13.76μg m~(-3)respectively.Compared with RF,the R^(2)increases by 0.06,the RMSE decreases by 4.55μg m~(-3),and the Within-EE increases by 7.28%.Additionally,compared to DNN,MTL shows an increase of 0.01 in R^(2)and a decrease of 0.02 in RMSE in AOD retrieval,with a corresponding increase of 2.89%in Within-EE.For PM_(2.5)retrieval,MTL exhibits an increase of 0.05 in R^(2),a decrease of 1.76μg m~(-3)in RMSE,and an increase of 6.83%in Within-EE.The evaluation suggests that MTL is able to provide simultaneously improved AOD and PM_(2.5)retrievals,demonstrating a significant advantage in efficiently capturing the spatial distribution of PM_(2.5)concentration and AOD.
基金supported by the Program of Support Xinjiang by Technology(2024E02028,B2-2024-0359)Xinjiang Tianchi Talent Program of 2024,the Foundation of Chinese Academy of Sciences(B2-2023-0239)the Youth Foundation of Shandong Natural Science(ZR2023QD070).
文摘As one of the main characteristics of atmospheric pollutants,PM_(2.5) severely affects human health and has received widespread attention in recent years.How to predict the variations of PM_(2.5) concentrations with high accuracy is an important topic.The PM_(2.5) monitoring stations in Xinjiang Uygur Autonomous Region,China,are unevenly distributed,which makes it challenging to conduct comprehensive analyses and predictions.Therefore,this study primarily addresses the limitations mentioned above and the poor generalization ability of PM_(2.5) concentration prediction models across different monitoring stations.We chose the northern slope of the Tianshan Mountains as the study area and took the January−December in 2019 as the research period.On the basis of data from 21 PM_(2.5) monitoring stations as well as meteorological data(temperature,instantaneous wind speed,and pressure),we developed an improved model,namely GCN−TCN−AR(where GCN is the graph convolution network,TCN is the temporal convolutional network,and AR is the autoregression),for predicting PM_(2.5) concentrations on the northern slope of the Tianshan Mountains.The GCN−TCN−AR model is composed of an improved GCN model,a TCN model,and an AR model.The results revealed that the R2 values predicted by the GCN−TCN−AR model at the four monitoring stations(Urumqi,Wujiaqu,Shihezi,and Changji)were 0.93,0.91,0.93,and 0.92,respectively,and the RMSE(root mean square error)values were 6.85,7.52,7.01,and 7.28μg/m^(3),respectively.The performance of the GCN−TCN−AR model was also compared with the currently neural network models,including the GCN−TCN,GCN,TCN,Support Vector Regression(SVR),and AR.The GCN−TCN−AR outperformed the other current neural network models,with high prediction accuracy and good stability,making it especially suitable for the predictions of PM_(2.5)concentrations.This study revealed the significant spatiotemporal variations of PM_(2.5)concentrations.First,the PM_(2.5) concentrations exhibited clear seasonal fluctuations,with higher levels typically observed in winter and differences presented between months.Second,the spatial distribution analysis revealed that cities such as Urumqi and Wujiaqu have high PM_(2.5) concentrations,with a noticeable geographical clustering of pollutions.Understanding the variations in PM_(2.5) concentrations is highly important for the sustainable development of ecological environment in arid areas.