The cadmium (Cd) contents in rice plants and Cd accumulation in different parts of rice under Cd stress were studied to screen out Cd-highly tolerant and high-yield rice varieties. With different vadeties of japonic...The cadmium (Cd) contents in rice plants and Cd accumulation in different parts of rice under Cd stress were studied to screen out Cd-highly tolerant and high-yield rice varieties. With different vadeties of japonica and indica rice as the research objects, Cd contents and Cd accumulation of different rice varieties in harvest time were discussed by pot experiment, under two treatments of no adding Cd and Cd stress. Under both the two treatments, the Cd contents in different parts of rice all ranked as root〉stem〉leaf〉husk〉grain, and Cd was manly concentrated in dce roots. Cd accumulation and distribution differed among different rice varieties, especially among grains of different rice varieties. Among the 8 rice varieties, the increase of grain Cd content of Chunyou 84 was the smallest, indicating a weaker Cd accumulation ability. At the same time, the Cd accumulation in japonica rice was higher than that in indica rice under Cd stress. Under Cd stress, the yield of indica rice decreased significantly, while that of japonica rice increased. The lowest grain Cd content of Chunyou 84 indicated significant Cd tolerance. Although its yield was affected, it can still be recommended to be promoted in the Cd-polluted region of Hunan Province, considering the Cd security.展开更多
Neon flying squid Ommastrephes batramii is widely distributed in the North Pacific Ocean, which has become the main fishing species for Chinese squid jigging fleets since 1993. Many authors have made the studies on th...Neon flying squid Ommastrephes batramii is widely distributed in the North Pacific Ocean, which has become the main fishing species for Chinese squid jigging fleets since 1993. Many authors have made the studies on the fields of fishing ground and its environment conditions. However, the squid catch per fishing vessel attained the highest level of about 550 t in 2004. In this paper, the catch and its distribution in 2004 would be compared with the previous year. Based on the catch data from Chinese squid jigging vessels and sea surface temperature with the format of 1 °latitude by 1 °longitude from May to November in 2004, the distribution maps were drawn by Marine explorer 4.0. The results show that the production in the east waters to 160°E was low during May and July. During October and November, the production in the waters from 150°E to 160°E was relatively higher, which occupied 62.5 percent of the total catch. During November, the production in the west waters to 150°E was also low. The highest CPUE area located in the west waters to 150°E, the next was the area from 150°E to 160°E and the lowest CPUE area located in the east waters to 160°E. The SST in the fishing ground seems to change seasonally. The suitable SST for each month is as follows: 12-14 ℃ in May, 15 ℃ - 16 ℃ in June, 14 ℃ - 16 ℃ in July, 18 ℃ - 19 ℃ in August, 16 ℃ -17 ℃ in September, 15 ℃- 16 ℃ in October and 12 ℃ - 13 ℃ in November. The result of K-S test shows that the above monthly suitable SST is considered as the indicator of looking for the main fishing ground.展开更多
The reduction behaviors and characteristics of products of the Fe-Cr-O system (FeCr2O4 and Fe2O3+Cr2O3) and Fe-Cr-Ni-O system (Fe2O3+Cr2O3+NiO) under various conditions were studied. The results show that more ...The reduction behaviors and characteristics of products of the Fe-Cr-O system (FeCr2O4 and Fe2O3+Cr2O3) and Fe-Cr-Ni-O system (Fe2O3+Cr2O3+NiO) under various conditions were studied. The results show that more Fe-Cr or Fe-Cr-Ni solution and less residual carbon content were obtained at higher temperatures and lower initial molar ratio of C to O (nC:nO). The degree of reduction was highly dependent on both time and temperature, and the residual carbon content greatly increased with increasing nC:nO at each temperature. The products generated during the carbothermic reduction of the Fe-Cr-O system were examined using X-ray diffraction (XRD). A scanning electron microscope (SEM) coupled with energy dispersive spectrometer was used to observe the microstructure and the distribution of elements in the various phases of the final reduction products of the Fe-Cr-O and Fe-Cr-Ni-O.展开更多
文摘The cadmium (Cd) contents in rice plants and Cd accumulation in different parts of rice under Cd stress were studied to screen out Cd-highly tolerant and high-yield rice varieties. With different vadeties of japonica and indica rice as the research objects, Cd contents and Cd accumulation of different rice varieties in harvest time were discussed by pot experiment, under two treatments of no adding Cd and Cd stress. Under both the two treatments, the Cd contents in different parts of rice all ranked as root〉stem〉leaf〉husk〉grain, and Cd was manly concentrated in dce roots. Cd accumulation and distribution differed among different rice varieties, especially among grains of different rice varieties. Among the 8 rice varieties, the increase of grain Cd content of Chunyou 84 was the smallest, indicating a weaker Cd accumulation ability. At the same time, the Cd accumulation in japonica rice was higher than that in indica rice under Cd stress. Under Cd stress, the yield of indica rice decreased significantly, while that of japonica rice increased. The lowest grain Cd content of Chunyou 84 indicated significant Cd tolerance. Although its yield was affected, it can still be recommended to be promoted in the Cd-polluted region of Hunan Province, considering the Cd security.
文摘Neon flying squid Ommastrephes batramii is widely distributed in the North Pacific Ocean, which has become the main fishing species for Chinese squid jigging fleets since 1993. Many authors have made the studies on the fields of fishing ground and its environment conditions. However, the squid catch per fishing vessel attained the highest level of about 550 t in 2004. In this paper, the catch and its distribution in 2004 would be compared with the previous year. Based on the catch data from Chinese squid jigging vessels and sea surface temperature with the format of 1 °latitude by 1 °longitude from May to November in 2004, the distribution maps were drawn by Marine explorer 4.0. The results show that the production in the east waters to 160°E was low during May and July. During October and November, the production in the waters from 150°E to 160°E was relatively higher, which occupied 62.5 percent of the total catch. During November, the production in the west waters to 150°E was also low. The highest CPUE area located in the west waters to 150°E, the next was the area from 150°E to 160°E and the lowest CPUE area located in the east waters to 160°E. The SST in the fishing ground seems to change seasonally. The suitable SST for each month is as follows: 12-14 ℃ in May, 15 ℃ - 16 ℃ in June, 14 ℃ - 16 ℃ in July, 18 ℃ - 19 ℃ in August, 16 ℃ -17 ℃ in September, 15 ℃- 16 ℃ in October and 12 ℃ - 13 ℃ in November. The result of K-S test shows that the above monthly suitable SST is considered as the indicator of looking for the main fishing ground.
基金Project (51074025) supported by the National Natural Science Foundation of ChinaProject (FRF-SD-12-009A) supported by the Fundamental Research Funds for the Central Universities,China
文摘The reduction behaviors and characteristics of products of the Fe-Cr-O system (FeCr2O4 and Fe2O3+Cr2O3) and Fe-Cr-Ni-O system (Fe2O3+Cr2O3+NiO) under various conditions were studied. The results show that more Fe-Cr or Fe-Cr-Ni solution and less residual carbon content were obtained at higher temperatures and lower initial molar ratio of C to O (nC:nO). The degree of reduction was highly dependent on both time and temperature, and the residual carbon content greatly increased with increasing nC:nO at each temperature. The products generated during the carbothermic reduction of the Fe-Cr-O system were examined using X-ray diffraction (XRD). A scanning electron microscope (SEM) coupled with energy dispersive spectrometer was used to observe the microstructure and the distribution of elements in the various phases of the final reduction products of the Fe-Cr-O and Fe-Cr-Ni-O.