Studies have been carried out on the effect of lanthanum-amino acid complexes on embryo development and nauplius growth ofPenaeus chinensis. The experimental results indicate that: (1)The optimum concentrations of lan...Studies have been carried out on the effect of lanthanum-amino acid complexes on embryo development and nauplius growth ofPenaeus chinensis. The experimental results indicate that: (1)The optimum concentrations of lanthanum-proline and Lanthanumphenylalanine for the development of eggs in monocell and dicell stages are 1.50~ 4.00mg/L and 0.50~3.00 mg/L, respectively, the egg hatching rates being raised by 21.0 ~ 46.0% and 23.0 ~42.8% ( P < 0.05 ) respectively. (2)The optimum concentrations of lanthanum- proline complex and Lanthanum-phenylalanine complex for the growth ofnauplii are 1.50~4.00 mg/L and 0.50~3.00 mg/L, the metamorphosis rate from nauplius to protozoea being raised by 16.4 ~27.5% and 20.4~26.7% (P < 0.05 ) respectively. (3)The positive effect of lanthanum-amino acid complexes on egg hatching and nauplius metamorphosis of Penaeus chinensis is better than that of lanthanum. With regard to the positive effect, lanthanum-proline complex is better than Lanthanum-phenylalanine complex.展开更多
To test the hypothesis that the variance of incubation temperature may have constituted a significant selective force for reptilian viviparity, we incubated eggs of the slender forest skink Scincella modesta in five t...To test the hypothesis that the variance of incubation temperature may have constituted a significant selective force for reptilian viviparity, we incubated eggs of the slender forest skink Scincella modesta in five thermally different natural nests and at two constant temperatures (18℃ and 21 ℃). Our manipulation of incubation temperature had significant effects on incubation length and several hatchling traits (snout-vent length, tail length, fore-limb length, and sprint speed), but not on hatching success and other hatchling traits examined (body mass, head size, and hind-limb length). Incubation length was nonlinearly sensitive to temperature, but it was not correlated with the thermal variance when holding the thermal mean constant. The 18 ℃ treatment not only produced smaller sized hatchlings but also resulted in decreased sprint speed. Eggs in the nest with the greatest proportion of temperatures higher than 28 ℃ also produced smaller sized hatchlings. None of the hatchling traits examined was affected by the thermal variance. Thermal fluctuations did result in longer incubation times, but females would benefit little from maintaining stable body temperatures or selecting thermally stable nests in terms of the reduced incubation length. Our data show that the mean rather than the variance of temperatures has a key role in influencing incubation length and hatchling phenotypes, and thus do not support the hypothesis tested .展开更多
基金Supported by National Natural Science Fund of China (No: 39370548)
文摘Studies have been carried out on the effect of lanthanum-amino acid complexes on embryo development and nauplius growth ofPenaeus chinensis. The experimental results indicate that: (1)The optimum concentrations of lanthanum-proline and Lanthanumphenylalanine for the development of eggs in monocell and dicell stages are 1.50~ 4.00mg/L and 0.50~3.00 mg/L, respectively, the egg hatching rates being raised by 21.0 ~ 46.0% and 23.0 ~42.8% ( P < 0.05 ) respectively. (2)The optimum concentrations of lanthanum- proline complex and Lanthanum-phenylalanine complex for the growth ofnauplii are 1.50~4.00 mg/L and 0.50~3.00 mg/L, the metamorphosis rate from nauplius to protozoea being raised by 16.4 ~27.5% and 20.4~26.7% (P < 0.05 ) respectively. (3)The positive effect of lanthanum-amino acid complexes on egg hatching and nauplius metamorphosis of Penaeus chinensis is better than that of lanthanum. With regard to the positive effect, lanthanum-proline complex is better than Lanthanum-phenylalanine complex.
基金The work was carried out in compliance with the current laws of China, and was supported by grant from Priority Academic Program Development of Jiangsu Higher Education Institutions to Ji's group, the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Project No. llKJB180004), Jiangsu Provincial Foundation of Natural Science (No. BK2012849) and the Natural Science Foundation of China (No. 31070339). We would like to thank Long-Hui Lin, Jian-Fang Gao, Lai-Gao Luo andYan-Fu Qu for their assistance both in the field and in the laboratory.
文摘To test the hypothesis that the variance of incubation temperature may have constituted a significant selective force for reptilian viviparity, we incubated eggs of the slender forest skink Scincella modesta in five thermally different natural nests and at two constant temperatures (18℃ and 21 ℃). Our manipulation of incubation temperature had significant effects on incubation length and several hatchling traits (snout-vent length, tail length, fore-limb length, and sprint speed), but not on hatching success and other hatchling traits examined (body mass, head size, and hind-limb length). Incubation length was nonlinearly sensitive to temperature, but it was not correlated with the thermal variance when holding the thermal mean constant. The 18 ℃ treatment not only produced smaller sized hatchlings but also resulted in decreased sprint speed. Eggs in the nest with the greatest proportion of temperatures higher than 28 ℃ also produced smaller sized hatchlings. None of the hatchling traits examined was affected by the thermal variance. Thermal fluctuations did result in longer incubation times, but females would benefit little from maintaining stable body temperatures or selecting thermally stable nests in terms of the reduced incubation length. Our data show that the mean rather than the variance of temperatures has a key role in influencing incubation length and hatchling phenotypes, and thus do not support the hypothesis tested .