基金Supported by the National Natural Science Foundation of China under Grant No.60573134 (国家自然科学基金)the National Information Security 242 Project of China under Grant No.2005C39 (国家 242 信息安全计划项目)
文摘网络异常检测技术是入侵检测领域研究的热点和难点内容,目前仍然存在着误报率较高、对建立检测模型的数据要求过高、在复杂的网络环境中由于"噪音"的影响而导致检测率不高等问题.基于改进的TCM-KNN(transductive confidence machines for K-nearest neighbors)置信度机器学习算法,提出了一种网络异常检测的新方法,能够在高置信度的情况下,使用训练的正常样本有效地对异常进行检测.通过大量基于著名的KDD Cup1999数据集的实验,表明其相对于传统的异常检测方法在保证较高检测率的前提下,有效地降低了误报率.另外,在训练集有少量"噪音"数据干扰的情况下,其仍能保证较高的检测性能;并且在采用"小样本"训练集以及为了避免"维灾难"而进行特征选取等优化处理后,其性能没有明显的削减.
基金Supponed by the National Natural Science Foundation of China under Grant Nos.6060309660533090(国家自然科学基金)+3 种基金the National High-Tech Research and Development Plan of China under Grant No.2006AA010107(国家高技术研究发展计划(863)the N~ional Key Technology R&D Program 0f China under Grant No.2007BAH11B01(国家科技支撑计划)the Program for Changjiang Scholars and Innovative Research Team in University ofChina under Grant Nos.IRT0652PCSIRT(长江学者和创新团队发展计划)