针对现有的目标检测算法检测表面亮度低的小尺度星系时效果不理想的问题,该文提出了一种基于掩码机制与目标交叉认证的低表面亮度的小尺度星系检测方法。首先,针对天文图像设计了一个基于目标总数变化率的阈值确定方法来获取阈值;其次,...针对现有的目标检测算法检测表面亮度低的小尺度星系时效果不理想的问题,该文提出了一种基于掩码机制与目标交叉认证的低表面亮度的小尺度星系检测方法。首先,针对天文图像设计了一个基于目标总数变化率的阈值确定方法来获取阈值;其次,设计了基于掩码机制的目标去除方法和基于自适应半径的点源区域获取方法,结合图像分割和点源检测算法生成非检测目标掩码,与原图进行逐点相乘去除图中体积较大、亮度较高的非检测目标,得到亮度微弱、体积较小的候选者;然后,利用图像分割技术获取候选体分割区域,计算区域面积和质心坐标定位候选者;最后,通过目标交叉认证的方法将候选者与星表中真实记录的星体进行坐标差值计算获取星系目标。实验与分析表明,在SDSS(Sloan Digital Sky Survey)天文数据集上该方法对低表面亮度的小尺度目标检测率可达约94.90%,星系的识别率可达到约89.21%,都高于经典的目标检测算法。展开更多
为打破现存研究普遍以网络拓扑一致性假设为前提的限制,弱化锚节点数量和质量对链接任务的影响,提出一种基于跨网络语义表征的用户链接算法CSRMA(cross-network semantic representation link algorithm based on mask attention mechan...为打破现存研究普遍以网络拓扑一致性假设为前提的限制,弱化锚节点数量和质量对链接任务的影响,提出一种基于跨网络语义表征的用户链接算法CSRMA(cross-network semantic representation link algorithm based on mask attention mechanism)。该算法框架包含3个模块:多视角采样与注意力机制相结合的跨网络表征模块、不同网络共性特征学习的语义空间映射模块、基于k-d树改进Gale-Shapley算法的用户身份精准链接模块。通过4个公开数据集上的实验验证了所提算法的有效性。与多个身份链接算法对比,CSRMA具有更高的精确率。展开更多
文摘针对现有的目标检测算法检测表面亮度低的小尺度星系时效果不理想的问题,该文提出了一种基于掩码机制与目标交叉认证的低表面亮度的小尺度星系检测方法。首先,针对天文图像设计了一个基于目标总数变化率的阈值确定方法来获取阈值;其次,设计了基于掩码机制的目标去除方法和基于自适应半径的点源区域获取方法,结合图像分割和点源检测算法生成非检测目标掩码,与原图进行逐点相乘去除图中体积较大、亮度较高的非检测目标,得到亮度微弱、体积较小的候选者;然后,利用图像分割技术获取候选体分割区域,计算区域面积和质心坐标定位候选者;最后,通过目标交叉认证的方法将候选者与星表中真实记录的星体进行坐标差值计算获取星系目标。实验与分析表明,在SDSS(Sloan Digital Sky Survey)天文数据集上该方法对低表面亮度的小尺度目标检测率可达约94.90%,星系的识别率可达到约89.21%,都高于经典的目标检测算法。
文摘为打破现存研究普遍以网络拓扑一致性假设为前提的限制,弱化锚节点数量和质量对链接任务的影响,提出一种基于跨网络语义表征的用户链接算法CSRMA(cross-network semantic representation link algorithm based on mask attention mechanism)。该算法框架包含3个模块:多视角采样与注意力机制相结合的跨网络表征模块、不同网络共性特征学习的语义空间映射模块、基于k-d树改进Gale-Shapley算法的用户身份精准链接模块。通过4个公开数据集上的实验验证了所提算法的有效性。与多个身份链接算法对比,CSRMA具有更高的精确率。