在机体免疫过程中,白细胞(一种免疫细胞)在血管剪切流作用下,经由多种黏附分子调控的滚动黏附,是许多生理病理现象中共同涉及的基础生物学过程。尽管已有大量实验研究揭示两种具有不同生物物理、生物化学性质的黏附分子,既选择素和整合...在机体免疫过程中,白细胞(一种免疫细胞)在血管剪切流作用下,经由多种黏附分子调控的滚动黏附,是许多生理病理现象中共同涉及的基础生物学过程。尽管已有大量实验研究揭示两种具有不同生物物理、生物化学性质的黏附分子,既选择素和整合素,在调控白细胞滚动黏附过程中存在显著的协同现象。但是,这一不同黏附分子调控细胞滚动黏附的协同机制尚未清楚。为此,考虑剪切流体作用和细胞与基底间的多种特异性黏附分子反应,并基于连续介质力学和统计热力学建立了细胞在层流中的滚动黏附模型,开展相应的多种黏附分子调控特异性黏附界面力学的随机动力学仿真模拟(Monte Carlo simulations),通过研究不同黏附分子密度比下,细胞的滚动黏附动力学过程,发现在白细胞从血液流场运动到免疫位点的过程中,低亲和力的选择素黏附分子键简短地断开/闭合消耗细胞滚动动能,从而细胞以较低的速度滚动,使得细胞-血管壁界面间有充足的停留时间形成强亲和力的整合素黏附分子键。所预测出的细胞滚动黏附相与选择素/整合素密度比的依赖关系与已有实验观察结果规律一致。展开更多
文摘在机体免疫过程中,白细胞(一种免疫细胞)在血管剪切流作用下,经由多种黏附分子调控的滚动黏附,是许多生理病理现象中共同涉及的基础生物学过程。尽管已有大量实验研究揭示两种具有不同生物物理、生物化学性质的黏附分子,既选择素和整合素,在调控白细胞滚动黏附过程中存在显著的协同现象。但是,这一不同黏附分子调控细胞滚动黏附的协同机制尚未清楚。为此,考虑剪切流体作用和细胞与基底间的多种特异性黏附分子反应,并基于连续介质力学和统计热力学建立了细胞在层流中的滚动黏附模型,开展相应的多种黏附分子调控特异性黏附界面力学的随机动力学仿真模拟(Monte Carlo simulations),通过研究不同黏附分子密度比下,细胞的滚动黏附动力学过程,发现在白细胞从血液流场运动到免疫位点的过程中,低亲和力的选择素黏附分子键简短地断开/闭合消耗细胞滚动动能,从而细胞以较低的速度滚动,使得细胞-血管壁界面间有充足的停留时间形成强亲和力的整合素黏附分子键。所预测出的细胞滚动黏附相与选择素/整合素密度比的依赖关系与已有实验观察结果规律一致。