期刊文献+
共找到258篇文章
< 1 2 13 >
每页显示 20 50 100
基于时空图卷积神经网络的强迫振荡定位与传播预测 被引量:2
1
作者 冯双 彭祥佳 +5 位作者 陈佳宁 陆友文 陈力 洪希 雷家兴 汤奕 《中国电机工程学报》 EI CSCD 北大核心 2024年第4期1298-1309,I0005,共13页
振荡源定位与传播预测是抑制强迫振荡和保证电力系统稳定的关键。现有方法未能充分利用电网的空间拓扑信息和振荡的时序特征,限制了定位和预测的精度。因此,该文提出一种基于时空图卷积神经网络的强迫振荡定位与传播预测方法。首先,根... 振荡源定位与传播预测是抑制强迫振荡和保证电力系统稳定的关键。现有方法未能充分利用电网的空间拓扑信息和振荡的时序特征,限制了定位和预测的精度。因此,该文提出一种基于时空图卷积神经网络的强迫振荡定位与传播预测方法。首先,根据节点特征和拓扑信息构建图数据,考虑到强迫振荡传播的快速性,通过切比雪夫多项式扩大节点空间感受野,提取振荡空间特征。同时,利用门控循环单元网络提取多个节点振荡数据的时序关联,通过时空图卷积单元融合空间和时序特征。然后,将定位与传播预测分别建模为分类和回归问题,训练时空图卷积神经网络模型。算例分析表明,所提方法具有更高的准确率,且在噪声和部分节点数据缺失的情况下依然具有较好的性能。 展开更多
关键词 强迫振荡 振荡源定位 振荡传播 时空图卷积神经网络
下载PDF
基于注意力特征融合时空图网络的超短期风电功率预测
2
作者 李丽芬 陈旭 +1 位作者 曹旺斌 梅华威 《电力科学与工程》 2024年第10期19-29,共11页
为提高风电功率的预测精度,综合考虑时间和空间多维度因素的影响,提出了一种基于注意力机制和多阶段特征融合的时空图神经网络(Spatio-temporal graph neural network with attention mechanism and multistage feature fusion,AMF-STG... 为提高风电功率的预测精度,综合考虑时间和空间多维度因素的影响,提出了一种基于注意力机制和多阶段特征融合的时空图神经网络(Spatio-temporal graph neural network with attention mechanism and multistage feature fusion,AMF-STGNN)的超短期风电功率预测方法。首先基于Pearson相关系数法对数据特征进行降维,确定影响风电功率的关键因素。然后构建AMF-STGNN预测模型。该模型主要由时空关联网络构建模块和多维度时空特征抽取模块组成。通过时空关联网络构建模块构建时空图,以揭示风电气象因素的空间连接关系。通过多维度时空特征抽取模块应用时间卷积和图卷积挖掘数据的时空特征,并利用注意力机制学习重要特征。此外,该方法还引入残差结构和多阶段特征融合结构提高模型的表达能力。最后以宁夏3个风电场真实数据为例,验证了所提方法在提升风电功率预测精度方面的有效性。 展开更多
关键词 风电功率 预测 时空图 相关性分析 注意力机制 多阶段特征融合
下载PDF
基于时空图神经网络的应用层DDoS攻击检测方法
3
作者 王健 陈琳 +1 位作者 王凯崙 刘吉强 《信息网络安全》 CSCD 北大核心 2024年第4期509-519,共11页
分布式拒绝服务(Distributed Denial of Service,DDoS)攻击已经成为网络安全的主要威胁之一,其中应用层DDoS攻击是主要的攻击手段。应用层DDoS攻击是针对具体应用服务的攻击,其在网络层行为表现正常,传统安全设备无法有效抵御。同时,现... 分布式拒绝服务(Distributed Denial of Service,DDoS)攻击已经成为网络安全的主要威胁之一,其中应用层DDoS攻击是主要的攻击手段。应用层DDoS攻击是针对具体应用服务的攻击,其在网络层行为表现正常,传统安全设备无法有效抵御。同时,现有的针对应用层DDoS攻击的检测方法检测能力不足,难以适应攻击模式的变化。为此,文章提出一种基于时空图神经网络(Spatio-Temporal Graph Neural Network,STGNN)的应用层DDoS攻击检测方法,利用应用层服务的特征,从应用层数据和应用层协议交互信息出发,引入注意力机制并结合多个GraphSAGE层,学习不同时间窗口下的实体交互模式,进而计算检测流量与正常流量的偏差,完成攻击检测。该方法仅利用时间、源IP、目的IP、通信频率、平均数据包大小5维数据便可有效识别应用层DDoS攻击。由实验结果可知,该方法在攻击样本数量较少的情况下,与对比方法相比可获得较高的Recall和F1分数。 展开更多
关键词 DDOS攻击 时空图神经网络 异常检测 注意力机制
下载PDF
交通速度预测时空图卷积网络及其FPGA实现研究
4
作者 谭会生 杨威 严舒琪 《电子测量技术》 北大核心 2024年第18期108-119,共12页
时空图卷积网络(STGCN)通过图卷积和时间卷积捕获交通数据的空间依赖性和时间依赖性,可有效提升交通速度预测的精度。但是硬件实现交通速度预测STGCN具有计算量大难以满足实际应用的实时性要求、资源消耗大导致成本增高等问题,在优化交... 时空图卷积网络(STGCN)通过图卷积和时间卷积捕获交通数据的空间依赖性和时间依赖性,可有效提升交通速度预测的精度。但是硬件实现交通速度预测STGCN具有计算量大难以满足实际应用的实时性要求、资源消耗大导致成本增高等问题,在优化交通速度预测STGCN模型基础上,提出了一种交通速度预测STGCN的FPGA实现结构组合优化的方法。首先,通过轻量化裁剪和预测数据位宽的精确选择,对交通速度预测STGCN进行了模型优化,以降低计算复杂度和资源消耗,并经过Python仿真验证其可行性。其次,通过采用流水线、并行计算和数据交替流水存取等组合优化策略,提出了一种交通速度预测STGCN的FPGA实现结构组合优化的方法,以提升系统计算速度。最后,使用Verilog编程对交通速度预测STGCN进行了FPGA的实现仿真和硬件测试。利用PeMSD7(M)数据集进行实验,结果显示FPGA实现单数据交通速度预测的时间为355.5μs,相比CPU、GPU平台及FPGA设计方案1对比,其处理速度最大分别提高了25.9倍、6.7倍和3.5倍,证明了交通速度预测STGCN的FPGA实现结构组合优化方法,在保持预测准确性的前提下可较大幅度的提升系统处理速度。 展开更多
关键词 交通速度预测 时空图卷积网络 FPGA 硬件实现结构 流水线 并行结构
下载PDF
基于全局时空图卷积神经网络的城市交通流量预测
5
作者 王佳昊 黎文斌 +1 位作者 郭仕尧 向平 《计算机科学》 CSCD 北大核心 2024年第S02期534-542,共9页
交通流量预测在智能交通系统(ITS)中发挥着重要作用,将城市中复杂的时空相关性高效且全面地提取出来是交通流量预测中面临的关键挑战。交通速度不仅在时间维度上具有短期和长期周期性依赖关系,而且在空间维度上具有局部和全局依赖性,现... 交通流量预测在智能交通系统(ITS)中发挥着重要作用,将城市中复杂的时空相关性高效且全面地提取出来是交通流量预测中面临的关键挑战。交通速度不仅在时间维度上具有短期和长期周期性依赖关系,而且在空间维度上具有局部和全局依赖性,现有方法对捕获交通数据的时空依赖关系有一定的局限。为此,文中提出了一种基于全局时空图卷积神经网络(Global Spatial-Temporal Graph Convolutional Network,GSTGCN)的深度学习模型,用于解决在城市交通速度预测的局限性。该模型中存在3种时空分量,可相应地对交通数据中的近期、天周期、周周期这3种不同的时空相关性进行建模。每个时空分量都由时间模块和空间模块组成,时间模块为了更好地获取交通数据的时间维度信息,引入了Informer机制以自适应地分配特征权重。空间模型为了更好地获取交通数据的空间关系,引入了图卷积神经网络来提取交通数据的局部和全局空间信息。在两个不同的真实数据集上进行了测试,结果表明所提出的GSTGCN优于最先进的基线模型。 展开更多
关键词 交通流量预测 全局时空图卷积网络 时空依赖性
下载PDF
分层残差结构的时空图网络多目标在线康复动作识别
6
作者 吴冬梅 白凡 宋婉莹 《计算机应用与软件》 北大核心 2024年第11期199-205,共7页
时空图卷积网络(ST-GCN)可以自动学习骨架数据的空间和时间特征,不受外界复杂环境的干扰。针对原有模型存在的骨架信息特征提取不充分、局部信息建模不强等问题,提出一种分层残差结构的骨架识别模型(Res2-STGCN)。构造分层残差结构的时... 时空图卷积网络(ST-GCN)可以自动学习骨架数据的空间和时间特征,不受外界复杂环境的干扰。针对原有模型存在的骨架信息特征提取不充分、局部信息建模不强等问题,提出一种分层残差结构的骨架识别模型(Res2-STGCN)。构造分层残差结构的时空图卷积模块结合原模块组成新的网络模型。通过改变模块的尺度来进一步扩大感受野。调整学习率间隔等参数解决过拟合问题。将Res2-STGCN与检测、姿态估计与跟踪算法结合实现多目标康复动作识别。在NTU-RGB+D和自建数据集上设计实验,对比基准算法ST-GCN,改进后最优模型的识别准确率在两种不同的数据划分标准下分别提升了5.61百分点和6.03百分点,在自建数据集上的平均识别准确率为99.5%,对复杂动作的识别具有较强的鲁棒性。 展开更多
关键词 时空图卷积 骨架行为识别 分层残差 多尺度特征
下载PDF
时空图卷积网络的骨架识别硬件加速器设计
7
作者 谭会生 严舒琪 杨威 《电子测量技术》 北大核心 2024年第11期36-43,共8页
随着人工智能技术的不断发展,神经网络的数据规模逐渐扩大,神经网络的计算量也迅速攀升。为了减少时空图卷积神经网络的计算量,降低硬件实现的资源消耗,提升人体骨架识别时空图卷积神经网络(ST-GCN)实际应用系统的处理速度,利用现场可... 随着人工智能技术的不断发展,神经网络的数据规模逐渐扩大,神经网络的计算量也迅速攀升。为了减少时空图卷积神经网络的计算量,降低硬件实现的资源消耗,提升人体骨架识别时空图卷积神经网络(ST-GCN)实际应用系统的处理速度,利用现场可编程门阵列(FPGA),设计开发了一个基于时空图卷积神经网络的骨架识别硬件加速器。通过对原网络模型进行结构优化与数据量化,减少了FPGA实现约75%的计算量;利用邻接矩阵稀疏性的特点,提出了一种稀疏性矩阵乘加运算的优化方法,减少了约60%的乘法器资源消耗。经过对人体骨架识别实验验证,结果表明,在时钟频率100 MHz下,相较于CPU,FPGA加速ST-GCN单元,加速比达到30.53;FPGA加速人体骨架识别,加速比达到6.86。 展开更多
关键词 人体骨架识别 时空图卷积神经网络(ST-GCN) 硬件加速器 现场可编程门阵列(FPGA) 稀疏矩阵乘加运算硬件优化
下载PDF
基于改进时空图卷积网络的人员交互行为识别 被引量:1
8
作者 雷静思 刘双广 +1 位作者 刘乔寿 王祥雪 《计算机应用与软件》 北大核心 2024年第4期151-158,共8页
针对人员交互行为识别存在的多模态数据融合方法导致的识别准确率与模型性能无法同时满足的问题,提出一种基于改进时空图卷积网络的人员交互行为识别方法。将单模态骨架数据引入级联的密集时空图卷积块网络中获得丰富的时空特征信息,提... 针对人员交互行为识别存在的多模态数据融合方法导致的识别准确率与模型性能无法同时满足的问题,提出一种基于改进时空图卷积网络的人员交互行为识别方法。将单模态骨架数据引入级联的密集时空图卷积块网络中获得丰富的时空特征信息,提高特征复用率;设计一种增强时空图卷积网络(EST-GCN)单元提高网络对关节点之间的信息表征能力;引入一种运动特征因子衡量肢体不同关节的重要程度,提高模型识别效果。在Kinetics数据集和办案区场景数据集上的实验结果表明,所提出方法在识别效果上具有一定优势,且该方法在模型复杂度及运行效率上具有很好的竞争力。 展开更多
关键词 交互行为 时空图卷积网络 骨架数据 密集
下载PDF
基于多尺度时空图卷积网络与Transformer融合的多节点短期电力负荷预测方法
9
作者 孟衡 张涛 +3 位作者 王金 张晋源 李达 时光蕤 《电网技术》 EI CSCD 北大核心 2024年第10期4297-4305,I0113-I0117,I0112,共15页
深度学习的发展为处理电力系统中海量的负荷数据提供了良好的基础。然而,现有的负荷预测方法大多采用历史负荷序列的时间相关性构建模型,没有同时考虑相邻节点之间存在的空间耦合特性和外部因素的影响。由于图卷积神经网络在挖掘电力系... 深度学习的发展为处理电力系统中海量的负荷数据提供了良好的基础。然而,现有的负荷预测方法大多采用历史负荷序列的时间相关性构建模型,没有同时考虑相邻节点之间存在的空间耦合特性和外部因素的影响。由于图卷积神经网络在挖掘电力系统拓扑结构中的空间特征上具有巨大潜力,因此,该文提出一种基于属性增强的多尺度时空图卷积神经网络与Transformer融合的电力系统多节点负荷预测方法。首先,将外部因素建模为动态属性和静态属性,设计属性增强单元对这些因素进行编码,并利用快速最大互信息系数量化各节点负荷的动态耦合信息。其次,采用多尺度时空图卷积网络挖掘节点间的短期时空特征,同时采用Transformer补充挖掘各节点负荷的长期时域特征。最后,使用门控融合层对两个模型进行融合。在纽约公开负荷数据集上的实验结果表明,所提方法能够充分挖掘多节点负荷数据中的时空耦合特性,具有更高的预测精度和稳定性。 展开更多
关键词 多节点负荷预测 多尺度时空图卷积神经网络 属性增强 TRANSFORMER
下载PDF
基于时空图卷积网络和自注意机制的频率稳定性预测
10
作者 杜东来 韩松 荣娜 《电工技术学报》 EI CSCD 北大核心 2024年第16期4985-4995,共11页
针对传统数据驱动预测方法对电力系统频率稳定性预测的时空特性利用不充分、新拓扑下泛化能力差和可解释性较弱的问题,该文提出了一种基于自注意力机制和时空图卷积网络(STGCN)的频率稳定性预测方法。STGCN预测方法利用一维时间卷积层... 针对传统数据驱动预测方法对电力系统频率稳定性预测的时空特性利用不充分、新拓扑下泛化能力差和可解释性较弱的问题,该文提出了一种基于自注意力机制和时空图卷积网络(STGCN)的频率稳定性预测方法。STGCN预测方法利用一维时间卷积层提取系统时间信息,利用切比雪夫图卷积通过近似拉普拉斯矩阵的多项式函数执行图卷积操作,从而捕获各母线及其邻居的拓扑结构信息;然后,采用基于自注意力机制的可微分图池化层来获得各母线注意力得分以对预测模型的决策过程进行可解释性分析,该分层池化策略允许模型尽可能地保留有价值的节点特征,并根据保留特征和动态拓扑有效分配节点以提高模型的泛化能力与鲁棒性;最后,在修改的新英格兰39节点系统和ACTIVSg500节点系统上的测试验证了所提方法的有效性。与传统方法相比,该文所提STGCN具有更高的预测精度、更好的鲁棒性和泛化能力。同时,该方法可以提供系统内各母线对预测结果的具体影响。 展开更多
关键词 频率稳定性预测 深度学习 时空图神经网络 自注意力机制 可解释性
下载PDF
基于时空关联的时空图卷积神经网络城市轨道交通进站客流预测
11
作者 王润祺 郝妍熙 +2 位作者 胡华 方勇 刘志钢 《城市轨道交通研究》 北大核心 2024年第9期91-96,共6页
[目的]准确的短时客流预测对于提高超大规模城市轨道交通线网的运营和管理效率具有重要意义,而目前现有研究对于深度挖掘时空关联性仍不够充分,为此基于短时客流的时空规律提出了基于客流时空关联特征的STGCN(时空图卷积神经网络)模型。... [目的]准确的短时客流预测对于提高超大规模城市轨道交通线网的运营和管理效率具有重要意义,而目前现有研究对于深度挖掘时空关联性仍不够充分,为此基于短时客流的时空规律提出了基于客流时空关联特征的STGCN(时空图卷积神经网络)模型。[方法]首先,通过切比雪夫图卷积网络捕捉超大规模城市轨道交通网络的空间相关性,借助门控循环单元挖掘多时空关联特征下客流的时间相关性;然后,分析待预测车站历史客流数据相关性及OD(起讫点)客流数据相关性,以深入提取时空相关性;最后,结合客流时空关联特征建立STGCN模型。[结果及结论]以上海地铁江苏路站为例,进行短时进站客流预测,结果表明采用时空关联特征参数的预测结果较未加入特征参数的预测精度提高了16%,预测效果较优。 展开更多
关键词 城市轨道交通 短时进站客流预测 时空关联性 时空图卷积神经网络
下载PDF
基于时空图注意力网络的服务机器人动态避障
12
作者 杜海军 余粟 《计算机工程》 CAS CSCD 北大核心 2024年第2期105-112,共8页
为了解决服务机器人在具有自主决策能力的密集人群中容易发生碰撞、假死和路径不自然等问题,在深度强化学习的框架下提出基于时空图注意力网络的服务机器人动态避障算法。时空图注意力网络作为邻近策略优化(PPO)算法的决策函数,首先采... 为了解决服务机器人在具有自主决策能力的密集人群中容易发生碰撞、假死和路径不自然等问题,在深度强化学习的框架下提出基于时空图注意力网络的服务机器人动态避障算法。时空图注意力网络作为邻近策略优化(PPO)算法的决策函数,首先采用门控循环单元控制机器人对环境的记忆和遗忘程度,提取环境的时间特征,使其对行人运动趋势有一定的预测作用;然后采用图注意力网络获取机器人和行人在空间上的隐式交互特征,使机器人能寻找无碰撞路径;最后在PPO算法中对时空图注意力网络进行训练,使得机器人在人群中完成无碰撞导航任务。在人均2.5 m^(2)的动态封闭环境中对算法进行实验验证,结果表明,与非学习型的动态窗口算法相比,该算法导航成功率提高71个百分点,与基于学习型的DSRNN-RL算法相比,该算法导航成功率提高3个百分点同时导航路径更短。Gazebo环境下的实时导航测试结果表明,所提算法的平均推理时间为21.90 ms,可以满足实时导航的要求。 展开更多
关键词 服务机器人 动态避障 深度强化学习 时空图注意力网络 实时导航
下载PDF
基于时空图注意力卷积神经网络的车辆轨迹预测
13
作者 袁静 夏英 《计算机科学》 CSCD 北大核心 2024年第12期157-165,共9页
车辆轨迹预测是交通管理、智能汽车和自动驾驶等领域的一项关键技术。准确预测车辆轨迹,有利于汽车安全行驶。城市交通场景中,车辆轨迹数据的时空特征复杂多变。为充分获取数据中的动态时空相关性,提高轨迹预测精度,同时降低模型复杂度... 车辆轨迹预测是交通管理、智能汽车和自动驾驶等领域的一项关键技术。准确预测车辆轨迹,有利于汽车安全行驶。城市交通场景中,车辆轨迹数据的时空特征复杂多变。为充分获取数据中的动态时空相关性,提高轨迹预测精度,同时降低模型复杂度,提出了时空图注意力卷积神经网络模型(Spatial-Temporal Graph Attention Convolutional Network,STGACN)。该模型首先通过轨迹信息嵌入模块对车辆历史轨迹数据进行时空图转换,然后通过时空卷积块及其堆叠完成轨迹数据的时序特征和空间特征的提取与融合,最终由门控递归单元完成编码与解码工作,得到预测轨迹。模型采用由膨胀因果卷积和门控单元组成的门控卷积网络提取时序特征,避免了循环神经网络带来的冗余迭代,使得模型参数更少,轨迹预测推理速度更快;时空卷积块组的时空特征融合工作使模型关注到更丰富的场景特征,提高了预测精度。在真实轨迹数据集Argoverse和NGSIM上进行实验,结果表明STGACN模型与基线模型相比,具有更高的预测精度和效率。 展开更多
关键词 车辆轨迹预测 时空相关性 时空图 图卷积网络 注意力机制
下载PDF
基于时空图神经网络的异构交通参与者风险预测
14
作者 孟相浩 牛凌 +2 位作者 席军强 陈丹妮 吕超 《汽车工程》 EI CSCD 北大核心 2024年第9期1537-1545,共9页
有效预测驾驶员视野下的多交通参与者未来风险指标是为人类驾驶员提供风险预警,规避潜在碰撞风险的关键。大多数现有对风险的研究仅考虑场景中单一个体与本车之间的成对交互关系,并从评估而非预测的角度展开研究,而忽略异构交通参与者... 有效预测驾驶员视野下的多交通参与者未来风险指标是为人类驾驶员提供风险预警,规避潜在碰撞风险的关键。大多数现有对风险的研究仅考虑场景中单一个体与本车之间的成对交互关系,并从评估而非预测的角度展开研究,而忽略异构交通参与者之间不同的交互关系及未来风险状态。本文提出了一种基于时空图卷积神经网络的异构多目标风险预测方法Risk-STGCN,通过图卷积及时间卷积分别对单帧场景图信息与时序信息进行学习,结合多层时序预测网络对多目标风险指标TTC进行预测。在开源BLVD与实车自采数据集上进行了训练验证,并与常用序列预测模型进行对比。实验结果表明,所提模型在不同数据集上的平均TTC误差均在0.95 s以下,多实验指标均优于文中所提到的其他模型,具有良好的鲁棒性,同时提升了复杂交通场景下风险预测的可解释性。 展开更多
关键词 智能汽车 多交通参与者 交互表征 风险预测 时空图神经网络
下载PDF
基于双重注意力时空图卷积网络的行人轨迹预测
15
作者 向晓倩 陈璟 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第12期2586-2595,共10页
当前行人轨迹预测研究面临两大挑战:1)如何有效提取行人前后帧之间的时空相关性;2)如何避免在轨迹采样过程中受到采样偏差的影响而导致性能下降.针对以上问题,提出基于双重注意力时空图卷积网络与目的抽样网络的行人轨迹预测模型.利用... 当前行人轨迹预测研究面临两大挑战:1)如何有效提取行人前后帧之间的时空相关性;2)如何避免在轨迹采样过程中受到采样偏差的影响而导致性能下降.针对以上问题,提出基于双重注意力时空图卷积网络与目的抽样网络的行人轨迹预测模型.利用时间注意力捕获行人前后帧的关联性,利用空间注意力获取周围行人之间的相关性,通过时空图卷积进一步提取行人之间的时空相关性.引入可学习的抽样网络解决随机抽样导致的分布不均匀的问题.大量实验表明,在ETH和UCY数据集上,新方法的精度与当前最先进的方法相当,且模型参数量减少1.65×10^(4),推理时间缩短0.147 s;在SDD数据集上精度虽略有下降,但模型参数量减少了3.46×10^(4),展现出良好的性能平衡,能为行人轨迹预测提供新的有效途径. 展开更多
关键词 轨迹预测 深度学习 图卷积网络 时空图卷积 时间注意力 空间注意力 轨迹采样
下载PDF
基于时空图注意力的短期电力负荷预测方法
16
作者 李文英 杨高才 +4 位作者 文明 罗姝晨 于宗超 姜羽 王鼎湘 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期57-67,共11页
准确的电力负荷预测对现代电力系统的安全经济运行至关重要.电力负荷预测可以表述为一个具有一定潜在空间依赖性的多变量时序预测问题.然而,大多数现有的电力负荷预测工作未能探索这种空间依赖关系.基于此,本文提出了一种基于时空图注... 准确的电力负荷预测对现代电力系统的安全经济运行至关重要.电力负荷预测可以表述为一个具有一定潜在空间依赖性的多变量时序预测问题.然而,大多数现有的电力负荷预测工作未能探索这种空间依赖关系.基于此,本文提出了一种基于时空图注意网络的短期电力负荷预测方法.提出一种基于时空图注意网络模块,该模块使用图注意层实现自适应的捕捉各用户间的潜在空间依赖性,同时使用门控卷积注意力层对各用户用电量在时间维度上进行自适应拟合,以提高网络的预测精度.实际数据实验表明,本文提出的模型整体预测精度提高明显,特别是在一定程度上缓解了长程预测精度恶化的问题,验证了所提方法的有效性与可行性. 展开更多
关键词 电力负荷预测 小世界网络 时空图注意力 门控扩张因果卷积
下载PDF
基于实时滑动分解的融合时空图卷积流量预测研究
17
作者 牛帅 王景升 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第10期4002-4013,共12页
为解决目前数据分解方法存在的信息泄露以及训练和测试时分量个数不一致的问题,提出一种新颖的模型−无信息泄露的实时滑动自适应噪声完备集合经验模态分解和注意力机制的融合时空图卷积,称之为EASTGCN。在模型输入前端,提出一种实时滑... 为解决目前数据分解方法存在的信息泄露以及训练和测试时分量个数不一致的问题,提出一种新颖的模型−无信息泄露的实时滑动自适应噪声完备集合经验模态分解和注意力机制的融合时空图卷积,称之为EASTGCN。在模型输入前端,提出一种实时滑动分解方法,此方法使得训练集随着时间轴动态变化,在每次分解过程中使用的均是实时和历史信息并未使用未来信息,更加符合实时预测任务需求。紧接着,利用自适应噪声完备集合经验模态分解技术将交通流数据进行分解得到一系列本征模态函数分量,将分量分别按照邻近、日和周相关等时段构建多尺度输入以表达时序数据的时间相似性;然后,构建一个时空融合网络有向图,有向图由表示时间相似性的时间图和反映空间连通流向性的空间图组成,用以表达路网节点所包含的时空相似性信息;同时,在模型训练过程中通过引入时空注意力机制使得模型自适应为时空关系分配不同的权重以便关注相似性更强的关键节点来提高模型预测精度。最后,为了验证EASTGCN模型的稳定性和鲁棒性,分别设计了多因素输入实验和多步长对比实验,并在公开的数据集上进行了实例验证。研究结果表明,EASTGCN模型在多步长预测任务中指标增幅跨度最小且性能最稳定;多因素输入的EASTGCN模型在PEMS04数据集的MAE、RMSE指标上相对于单因素输入模型来说分别降低3.83%~27.03%、4.24%~12.77%,在PEMS08数据集的MAE、RMSE指标上降低0.91%~38.69%、0.07%~31.21%。总的来说,EASTGCN模型不论是在长期预测任务还是在预测精度上均有更好的表现,实时滑动分解方法为“分解+预测”组合模型提供了一种新的思路。 展开更多
关键词 流量预测 时空图卷积 自适应噪声完备集合经验模态分解 多尺度输入 实时滑动
下载PDF
基于时间动态帧选择与时空图卷积的可解释骨架行为识别
18
作者 梁成武 杨杰 +3 位作者 胡伟 蒋松琪 钱其扬 侯宁 《图学学报》 CSCD 北大核心 2024年第4期791-803,共13页
骨架行为识别是计算机视觉和机器学习领域的研究热点。现有数据驱动型神经网络往往忽略骨架序列时间动态帧选择和模型内在人类可理解的决策逻辑,造成可解释性不足。为此提出一种基于时间动态帧选择与时空图卷积的可解释骨架行为识别方法... 骨架行为识别是计算机视觉和机器学习领域的研究热点。现有数据驱动型神经网络往往忽略骨架序列时间动态帧选择和模型内在人类可理解的决策逻辑,造成可解释性不足。为此提出一种基于时间动态帧选择与时空图卷积的可解释骨架行为识别方法,以提高模型的可解释性和识别性能。首先利用骨架帧置信度评价函数删除低质骨架帧,以解决骨架序列噪声问题。其次基于人体运动领域知识,提出自适应时间动态帧选择模块用于计算运动行为显著区域,以捕捉关键人体运动骨架帧的动态规律。为学习行为骨架节点内在拓扑结构,改进时空图卷积网络用于可解释骨架行为识别。在NTU RGB+D,NTU RGB+D 120和FineGym这3个大型公开数据集上的实验评估表明,该方法的骨架行为识别准确率优于对比方法并具有可解释性。 展开更多
关键词 行为识别 骨架序列 可解释 运动显著区域 时空图卷积网络
下载PDF
基于聚合时空图卷积网络的多风场超短期风速预测
19
作者 徐辰晓 崔承刚 +3 位作者 郭为民 杨宁 刘备 孟青叶 《电源学报》 CSCD 北大核心 2024年第4期133-142,共10页
在一定环境内区域风电场呈不规则分布的条件下,传统卷积神经网络预测方法无法体现出各区域风场的分布状态和影响关系,难以实现对风速的准确预测。针对此问题,采用图卷积网络进行特征建模,并根据多风场的拓扑结构和各区域风场风速的互相... 在一定环境内区域风电场呈不规则分布的条件下,传统卷积神经网络预测方法无法体现出各区域风场的分布状态和影响关系,难以实现对风速的准确预测。针对此问题,采用图卷积网络进行特征建模,并根据多风场的拓扑结构和各区域风场风速的互相关系数建立连通图和权重矩阵。其次,依赖风场风速的时间动态特征,采用改进并列式卷积结构获取同一风场下多时间段的风速序列相关性。再次,利用风场风速的空间相关性和延时效应,采用二阶聚合方法将不同区域内风速的时空特征聚合。最后,经某区域风场数据验证表明,在0~4 h预测尺度下该方法在多风场超短期风速预测中具有提取时空特征并提升预测性能的效果。 展开更多
关键词 风速预测 聚合时空图卷积网络 时空相关性
下载PDF
基于异质时空图注意力网络的铁路车站货运量预测
20
作者 张海山 王文斌 周瑾 《铁道货运》 2024年第6期52-59,共8页
车站货运量短期预测,有助于车站和调度部门提前了解运量变化趋势,调整运输资源安排,提高运输组织效率。选取国家能源集团铁路货运车站作为研究对象,以车站为图网络节点,将车站物理相邻关系、运单需求关系和列车开行关系抽象成节点之间... 车站货运量短期预测,有助于车站和调度部门提前了解运量变化趋势,调整运输资源安排,提高运输组织效率。选取国家能源集团铁路货运车站作为研究对象,以车站为图网络节点,将车站物理相邻关系、运单需求关系和列车开行关系抽象成节点之间的异质边,构建基于异质时空图注意力网络的货运量预测模型。模型在单个图网络中利用图注意力机制捕捉车站与其邻居之间的空间关联性,通过异质节点特征融合机制实现3个子图间的信息融合,处理得到的空间特征输入循环门控单元以更新时序特征。选取国家能源集团铁路各车站实际货运量数据进行实验,结果证明提出的模型预测效果更加准确,能够有效辅助调度统计工作。 展开更多
关键词 重载铁路 车站货运量 时空图注意力网络 时序预测 注意力机制
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部