与均匀阵列相比,稀疏阵列可以使天线阵列成本降低,减少数据处理,同时带来更大的阵列孔径提高信号解析能力,在信号处理中有着广泛的应用。但是由于其排布的不规则性,计算量较大,二维面阵合成协方差矩阵存在空洞,对角度估计的准确性造成...与均匀阵列相比,稀疏阵列可以使天线阵列成本降低,减少数据处理,同时带来更大的阵列孔径提高信号解析能力,在信号处理中有着广泛的应用。但是由于其排布的不规则性,计算量较大,二维面阵合成协方差矩阵存在空洞,对角度估计的准确性造成负面影响,增强了系统对噪声的敏感度。为了克服这些问题,本文提出了一种新的角度估计方法,采用截断核范数以降低噪声的影响,并通过ℓ_(p)范数优化提升信号的稀疏表示,利用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)算法构造子问题恢复出完整的阵列信号。随后采用子阵划分技术和基于最小二乘的传播算子模型(Propagator Method,PM)对恢复的信号处理,精确估计信号源的方位和俯仰角。仿真结果表明,所提出的角度估计算法在角度精度和时间复杂度方面具有优越性。展开更多
针对图像修复过程中,颜色纹理光学属性分离不彻底,以及在稀疏表示图像修复时字典设计单一,导致壁画图像修复结果易出现结构不连贯和模糊效应等问题,提出了一种基于块核范数的鲁棒主成分分析(robust principal component analysis,RPCA)...针对图像修复过程中,颜色纹理光学属性分离不彻底,以及在稀疏表示图像修复时字典设计单一,导致壁画图像修复结果易出现结构不连贯和模糊效应等问题,提出了一种基于块核范数的鲁棒主成分分析(robust principal component analysis,RPCA)分解与熵权类稀疏的壁画修复方法。首先,采用提出的基于块核范数的RPCA图像分解算法,将壁画图像分解为结构层和纹理层,利用块核范数进行纹理矫正操作,克服了RPCA结构纹理分离不完全的问题。然后,提出熵加权k-means方法对结构层图像进行聚类,构建得到稀疏子类字典,并通过奇异值分解和分裂Bregman迭代优化的类稀疏修复方法,完成结构层图像的重构。最后,利用双三次插值算法实现对纹理层图像的修复,将修复后的结构层和纹理层进行融合,完成破损壁画的修复。通过对真实敦煌壁画数字化修复,实验结果表明,该算法能够有效地保护壁画图像的边缘和纹理等重要特征信息,无论从视觉效果还是从峰值信噪比等定量评价方面,提出的方法修复效果均优于比较算法,且修复执行效率更高。展开更多
阵元失效下多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达虚拟阵列协方差矩阵出现大批整行整列元素缺失,破坏原有内在完整结构,导致波达方向(Direction of Arrival,DOA)估计性能下降。为此,提出一种联合核范数和SCAD(Smoothly...阵元失效下多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达虚拟阵列协方差矩阵出现大批整行整列元素缺失,破坏原有内在完整结构,导致波达方向(Direction of Arrival,DOA)估计性能下降。为此,提出一种联合核范数和SCAD(Smoothly Clipped Absolute Deviation)惩罚的完整协方差矩阵重构方法,以利于阵元失效下MIMO雷达DOA的有效估计。首先对待恢复的协方差矩阵建立核范数和SCAD惩罚双先验约束模型,并利用等正弦空间稀疏化方式划分粗网格空间,在可容忍的模型误差内能大大降低运算复杂度;然后利用ALM-ADMM(Augmented Lagrange Multipliers-Alternating Direction Method of Multipliers)算法对双先验约束模型进行求解,从而恢复协方差矩阵中大量整行整列的缺失数据;最后通过RD-ESPRIT(Reduced Dimensional ESPRIT)算法进行目标DOA估计。仿真结果验证该方法能快速恢复虚拟协方差矩阵中的缺失数据,从而有效提高阵元失效下MIMO雷达的DOA估计性能。展开更多
文摘与均匀阵列相比,稀疏阵列可以使天线阵列成本降低,减少数据处理,同时带来更大的阵列孔径提高信号解析能力,在信号处理中有着广泛的应用。但是由于其排布的不规则性,计算量较大,二维面阵合成协方差矩阵存在空洞,对角度估计的准确性造成负面影响,增强了系统对噪声的敏感度。为了克服这些问题,本文提出了一种新的角度估计方法,采用截断核范数以降低噪声的影响,并通过ℓ_(p)范数优化提升信号的稀疏表示,利用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)算法构造子问题恢复出完整的阵列信号。随后采用子阵划分技术和基于最小二乘的传播算子模型(Propagator Method,PM)对恢复的信号处理,精确估计信号源的方位和俯仰角。仿真结果表明,所提出的角度估计算法在角度精度和时间复杂度方面具有优越性。
文摘针对图像修复过程中,颜色纹理光学属性分离不彻底,以及在稀疏表示图像修复时字典设计单一,导致壁画图像修复结果易出现结构不连贯和模糊效应等问题,提出了一种基于块核范数的鲁棒主成分分析(robust principal component analysis,RPCA)分解与熵权类稀疏的壁画修复方法。首先,采用提出的基于块核范数的RPCA图像分解算法,将壁画图像分解为结构层和纹理层,利用块核范数进行纹理矫正操作,克服了RPCA结构纹理分离不完全的问题。然后,提出熵加权k-means方法对结构层图像进行聚类,构建得到稀疏子类字典,并通过奇异值分解和分裂Bregman迭代优化的类稀疏修复方法,完成结构层图像的重构。最后,利用双三次插值算法实现对纹理层图像的修复,将修复后的结构层和纹理层进行融合,完成破损壁画的修复。通过对真实敦煌壁画数字化修复,实验结果表明,该算法能够有效地保护壁画图像的边缘和纹理等重要特征信息,无论从视觉效果还是从峰值信噪比等定量评价方面,提出的方法修复效果均优于比较算法,且修复执行效率更高。
文摘阵元失效下多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达虚拟阵列协方差矩阵出现大批整行整列元素缺失,破坏原有内在完整结构,导致波达方向(Direction of Arrival,DOA)估计性能下降。为此,提出一种联合核范数和SCAD(Smoothly Clipped Absolute Deviation)惩罚的完整协方差矩阵重构方法,以利于阵元失效下MIMO雷达DOA的有效估计。首先对待恢复的协方差矩阵建立核范数和SCAD惩罚双先验约束模型,并利用等正弦空间稀疏化方式划分粗网格空间,在可容忍的模型误差内能大大降低运算复杂度;然后利用ALM-ADMM(Augmented Lagrange Multipliers-Alternating Direction Method of Multipliers)算法对双先验约束模型进行求解,从而恢复协方差矩阵中大量整行整列的缺失数据;最后通过RD-ESPRIT(Reduced Dimensional ESPRIT)算法进行目标DOA估计。仿真结果验证该方法能快速恢复虚拟协方差矩阵中的缺失数据,从而有效提高阵元失效下MIMO雷达的DOA估计性能。