1 前言在土石坝及堤防工程中,基础与地基的联接及防渗大多是刚性砼结构,如砼防渗墙,龄墙等。一般结构尺寸往往较大,强度和刚度相对周围土体而言较大,结构设计时,为防止土体施于墙预应力过大和地基基础不均匀沉陷造成墙体断裂破坏,因而...1 前言在土石坝及堤防工程中,基础与地基的联接及防渗大多是刚性砼结构,如砼防渗墙,龄墙等。一般结构尺寸往往较大,强度和刚度相对周围土体而言较大,结构设计时,为防止土体施于墙预应力过大和地基基础不均匀沉陷造成墙体断裂破坏,因而材料用量和造价较高,大江大河的堤坝基础与地基用塑性砼'软'结合。这不仅改善了墙体与地基及周围土体的变形适应性问题,同时也达到了防渗加固的目的。低弹塑性砼较之常态砼在材料方面表现为水泥用量少,在性能上表现为抗压强度低,切线弹模小,极限变形量较大,凝结时间较长,防渗性能好等特点。据有关文献介绍,低弹塑性砼墙体与周围冲积层地基土体的相对变形或沉降只有几个 mm 之差,既与地基基础的变形基本接近,从而使结构在地基及基础中的稳定性增强。展开更多
An orthogonal test was conducted to investigate the influence of technical parameters of squeeze casting on the strength and ductility of AISigCu3 alloys. The experimental results showed that when the forming pressure...An orthogonal test was conducted to investigate the influence of technical parameters of squeeze casting on the strength and ductility of AISigCu3 alloys. The experimental results showed that when the forming pressure was higher than 65 MPa, the strength (ab) of A1Si9Cu3 alloys decreased with the forming pressure and pouring temperature increasing, whereas ab increased with the increase of filling velocity and mould preheating temperature. The ductility (6) by alloy was improved by increasing the forming pressure and filling velocity, but decreased with pouring temperature increasing. When the mould preheating temperature increased, the ductility increased first, and then decreased. Under the optimized parameters of pouring temperature 730 ℃, forming pressure 75 MPa, filling velocity 0.50 m/s, and mould preheating temperature 220 ℃, the tensile strength, elongation, and hardness of A1Si9Cu3 alloys obtained in squeeze casting were improved by 16.7%, 9.1%, and 10.1%, respectively, as compared with those of sand castings.展开更多
In order to study the deformation behavior and evaluate the workability of the dual-phase Mg-9Li-3Al-2Sr alloy, isothermal hot compression tests were conducted using the Gleeble-3500 thermal-mechanical simulator, in r...In order to study the deformation behavior and evaluate the workability of the dual-phase Mg-9Li-3Al-2Sr alloy, isothermal hot compression tests were conducted using the Gleeble-3500 thermal-mechanical simulator, in ranges of elevated temperatures (423-573 K) and strain rates (0.001-1 s^-1). Plastic instability is evident during the deformation which is in the form of serrated flow; serrated yielding is attributed to the locking of mobile dislocations by the Mg and Li atoms which diffuse during the deformation. The relationships between flow stress, strain rate and deformation temperature were analyzed and the deformation activation energy and some basic material factors at different strains were calculated using the Arrhenius equation. The effects of temperature and strain rate on deformation behavior were represented using the Zener–Hollomon parameter in an exponent-type equation. To verify the validity of the constitutive model, the predicted values and experimental flow curves under different deformation conditions were compared, the correlation coefficient (0.9970) and average absolute relative error (AARE=4.41%) were calculated. The results indicate that the constitutive model can be used to accurately predict the flow behavior of dual-phase Mg-9Li-3Al-2Sr alloy during high temperature deformation.展开更多
A polycrystal plasticity model was developed to analyze the room-temperature deformation behaviors of Mg-3A1-1Zn alloy(AZ31).The uniaxial tension and compression tests at room temperature were conducted using cast a...A polycrystal plasticity model was developed to analyze the room-temperature deformation behaviors of Mg-3A1-1Zn alloy(AZ31).The uniaxial tension and compression tests at room temperature were conducted using cast and extruded AZ31 rods with different textures and combined with the proposed model to reveal the deformation mechanisms.It is shown that,different flow curves of two specimens under tension and compression tests can be simulated by this model.The flow curves of AZ31 extrusions exhibit different shapes for tension and compression due to different activities of tensile twinning and pyramidalc+a slip.The metallographic and TEM observations showed the equal twinning activities at the initial stage in tension and compression tests and the occurrence of pyramidalc+a slip in compression of as-cast Mg-3A1-1Zn alloy with increasing the strain,which is consistent with the simulated results by the proposed model.展开更多
Friction is a critical issue in plastic forming which influences forming force, metal flow, forming quality and service life of die. Since friction is a highly nonlinear physical phenomenon which is interactively affe...Friction is a critical issue in plastic forming which influences forming force, metal flow, forming quality and service life of die. Since friction is a highly nonlinear physical phenomenon which is interactively affected by so many factors, great efforts have been made to study the friction mechanism and controlling. The research progress of friction issues in plastic forming was summarized and discussed from four aspects: testing, characterizing, modeling and optimization/controlling. Considering urgent demands for green, efficient and precise forming of high-performance, lightweight and complex components in high-tech industries such as aerospace and automotive, the trends and challenges of friction study in plastic forming were proposed.展开更多
A multi-parameter nonlinear elasto-plastic constitutive model which can fully capture the three typical features of stress-strain response, linearity, plasticity-like stress plateau and densification phases was develo...A multi-parameter nonlinear elasto-plastic constitutive model which can fully capture the three typical features of stress-strain response, linearity, plasticity-like stress plateau and densification phases was developed. The functional expression of each parameter was determined using uniaxial compression tests for aluminum alloy foams. The parameters of the model can be systematically varied to describe the effect of relative density which may be responsible for the changes in yield stress and hardening-like or softening-like behavior at various strain rates. A comparison between model predictions and experimental results of the aluminum alloy foams was provided to validate the model. It was proved to be useful in the selection of the optimal-density and energy absorption foam for a specific application at impact events.展开更多
A combined method of selective laser sintering (SLS) and cold isostatic pressing (CIP) was applied to manufacturing metal parts rapidly. Finite element method was used to predict final dimensions and decrease cost...A combined method of selective laser sintering (SLS) and cold isostatic pressing (CIP) was applied to manufacturing metal parts rapidly. Finite element method was used to predict final dimensions and decrease cost. The simulations of CIP of selective laser sintered parts were carried out by Drucker-Prager-Cap constitutive model with ABAQUS computer program. The property of metal powder was measured by CIP experiments. The results show the rubber bag and the friction coefficient have little influence on results of simulations. The parts only have uniform shrinkage and have no obvious distortion in shape. The results of simulations show a good agreement with the experimental results and the calculated results, indicating that the Drucker-Prager-Cap model is an effective model to simulate CIP process. The simulations could give a useful direction to forming process of the CIP of selective laser sintered components. K展开更多
Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etch...Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etching and observed by scanning electron microscopy (SEM). The mechanical properties were examined by room-temperature uniaxial compression test. The results show that both plasticity and fracture mode are significantly affected by the network structure and the alteration occurs when the size of the network structure reaches up to a critical value. When the cell size (dc) of the network structure is ~3μm, Zr-based BMGs characterize in plasticity that decreases with increasingdc. The fracture mode gradually transforms from single 45° shear fracture to double 45° shear fracture and then cleavage fracture with increasingdc. In addition, the mechanisms of the transition of the plasticity and the fracture mode for these Zr-based BMGs are also discussed.展开更多
A thickness strain model of aluminium alloy plate under plastic deformation,based on thin plate assumption was proposed.It is found that when ratio of stress fractions is constant during in-plane loading,ratios of str...A thickness strain model of aluminium alloy plate under plastic deformation,based on thin plate assumption was proposed.It is found that when ratio of stress fractions is constant during in-plane loading,ratios of strain components under various loading conditions are linearly related and these points of ratios form a η-η line.Under these simple loadings,strains in thickness direction can be easily calculated by the η-η line equation without integral and differential work.When the plate is under more complicated loading conditions,the thickness can be computed by the proposed optimization and piecewise calculation model.Validation computations indicate that the relative error of the results of the presented model is less than 0.75% compared with the proven theories and FE simulation.Therefore,the developed model can be applied to engineering calculation,e.g.pre-stretching analysis of aerospace aluminium thick plate,with acceptable accuracy.展开更多
The electroplastic effect in AZ31B magnesium alloy sheet was investigated through uniaxial tensile tests. In order to show the athermal effect of the electrical pulses, two types of uniaxial tensile tests at the same ...The electroplastic effect in AZ31B magnesium alloy sheet was investigated through uniaxial tensile tests. In order to show the athermal effect of the electrical pulses, two types of uniaxial tensile tests at the same testing temperature were carried out: uniaxial tension in environmental cabinet and uniaxial tension with electrical pulses. In addition, the distribution of temperature field in the cross-section area during uniaxial tension with electrical pulses was simulated. The results show that the distribution of temperature field along the cross-section area is homogeneous. By comparing the true stress?true strain curves of AZ31B alloy under uniaxial tensile tests, the athermal effect with electrical pulses was confirmed. The microstructure evolution after the uniaxial tension was studied by optical microscopy. The results indicate that the electrical pulses induced dynamic recrystallization plays an important role in the decrease of flow stress. Finally, a flow stress model of AZ31B sheet taking the influence of electroplastic effect into account was proposed and validated. The results demonstrate that the calculated data fit the experimental data well.展开更多
文摘1 前言在土石坝及堤防工程中,基础与地基的联接及防渗大多是刚性砼结构,如砼防渗墙,龄墙等。一般结构尺寸往往较大,强度和刚度相对周围土体而言较大,结构设计时,为防止土体施于墙预应力过大和地基基础不均匀沉陷造成墙体断裂破坏,因而材料用量和造价较高,大江大河的堤坝基础与地基用塑性砼'软'结合。这不仅改善了墙体与地基及周围土体的变形适应性问题,同时也达到了防渗加固的目的。低弹塑性砼较之常态砼在材料方面表现为水泥用量少,在性能上表现为抗压强度低,切线弹模小,极限变形量较大,凝结时间较长,防渗性能好等特点。据有关文献介绍,低弹塑性砼墙体与周围冲积层地基土体的相对变形或沉降只有几个 mm 之差,既与地基基础的变形基本接近,从而使结构在地基及基础中的稳定性增强。
基金Project(11C26211304055) supported by Small to Medium Enterprise Innovation Fund
文摘An orthogonal test was conducted to investigate the influence of technical parameters of squeeze casting on the strength and ductility of AISigCu3 alloys. The experimental results showed that when the forming pressure was higher than 65 MPa, the strength (ab) of A1Si9Cu3 alloys decreased with the forming pressure and pouring temperature increasing, whereas ab increased with the increase of filling velocity and mould preheating temperature. The ductility (6) by alloy was improved by increasing the forming pressure and filling velocity, but decreased with pouring temperature increasing. When the mould preheating temperature increased, the ductility increased first, and then decreased. Under the optimized parameters of pouring temperature 730 ℃, forming pressure 75 MPa, filling velocity 0.50 m/s, and mould preheating temperature 220 ℃, the tensile strength, elongation, and hardness of A1Si9Cu3 alloys obtained in squeeze casting were improved by 16.7%, 9.1%, and 10.1%, respectively, as compared with those of sand castings.
基金Projects(CDJZR14130007106112015CDJXY130011)supported by Fundamental Research Funds for the Central Universities,China
文摘In order to study the deformation behavior and evaluate the workability of the dual-phase Mg-9Li-3Al-2Sr alloy, isothermal hot compression tests were conducted using the Gleeble-3500 thermal-mechanical simulator, in ranges of elevated temperatures (423-573 K) and strain rates (0.001-1 s^-1). Plastic instability is evident during the deformation which is in the form of serrated flow; serrated yielding is attributed to the locking of mobile dislocations by the Mg and Li atoms which diffuse during the deformation. The relationships between flow stress, strain rate and deformation temperature were analyzed and the deformation activation energy and some basic material factors at different strains were calculated using the Arrhenius equation. The effects of temperature and strain rate on deformation behavior were represented using the Zener–Hollomon parameter in an exponent-type equation. To verify the validity of the constitutive model, the predicted values and experimental flow curves under different deformation conditions were compared, the correlation coefficient (0.9970) and average absolute relative error (AARE=4.41%) were calculated. The results indicate that the constitutive model can be used to accurately predict the flow behavior of dual-phase Mg-9Li-3Al-2Sr alloy during high temperature deformation.
基金Project(51201092)supported by the National Natural Science Foundation of China
文摘A polycrystal plasticity model was developed to analyze the room-temperature deformation behaviors of Mg-3A1-1Zn alloy(AZ31).The uniaxial tension and compression tests at room temperature were conducted using cast and extruded AZ31 rods with different textures and combined with the proposed model to reveal the deformation mechanisms.It is shown that,different flow curves of two specimens under tension and compression tests can be simulated by this model.The flow curves of AZ31 extrusions exhibit different shapes for tension and compression due to different activities of tensile twinning and pyramidalc+a slip.The metallographic and TEM observations showed the equal twinning activities at the initial stage in tension and compression tests and the occurrence of pyramidalc+a slip in compression of as-cast Mg-3A1-1Zn alloy with increasing the strain,which is consistent with the simulated results by the proposed model.
基金Projects(50905144,51275415)supported by the National Natural Science Foundation of ChinaProject(B08040)supported by the Program for New Century Excellent Talents in University,China
文摘Friction is a critical issue in plastic forming which influences forming force, metal flow, forming quality and service life of die. Since friction is a highly nonlinear physical phenomenon which is interactively affected by so many factors, great efforts have been made to study the friction mechanism and controlling. The research progress of friction issues in plastic forming was summarized and discussed from four aspects: testing, characterizing, modeling and optimization/controlling. Considering urgent demands for green, efficient and precise forming of high-performance, lightweight and complex components in high-tech industries such as aerospace and automotive, the trends and challenges of friction study in plastic forming were proposed.
基金Projects (90716005, 10802055, 10972153) supported by the National Natural Science Foundation of ChinaProject (2007021005) supported by the Natural Science Foundation of Shanxi Province, China+2 种基金Project supported by the Postdoctoral Science Foundation of ChinaProject supported by the Homecomings Foundation, ChinaProject supported by the Top Young Academic Leaders of Higher Learning Institutions of Shanxi, China
文摘A multi-parameter nonlinear elasto-plastic constitutive model which can fully capture the three typical features of stress-strain response, linearity, plasticity-like stress plateau and densification phases was developed. The functional expression of each parameter was determined using uniaxial compression tests for aluminum alloy foams. The parameters of the model can be systematically varied to describe the effect of relative density which may be responsible for the changes in yield stress and hardening-like or softening-like behavior at various strain rates. A comparison between model predictions and experimental results of the aluminum alloy foams was provided to validate the model. It was proved to be useful in the selection of the optimal-density and energy absorption foam for a specific application at impact events.
基金Project(2007AA03Z115) supported by the High-Tech Research and Development Program of China
文摘A combined method of selective laser sintering (SLS) and cold isostatic pressing (CIP) was applied to manufacturing metal parts rapidly. Finite element method was used to predict final dimensions and decrease cost. The simulations of CIP of selective laser sintered parts were carried out by Drucker-Prager-Cap constitutive model with ABAQUS computer program. The property of metal powder was measured by CIP experiments. The results show the rubber bag and the friction coefficient have little influence on results of simulations. The parts only have uniform shrinkage and have no obvious distortion in shape. The results of simulations show a good agreement with the experimental results and the calculated results, indicating that the Drucker-Prager-Cap model is an effective model to simulate CIP process. The simulations could give a useful direction to forming process of the CIP of selective laser sintered components. K
基金Projects(50874045,51301194)supported by the National Natural Science Foundation of ChinaProject(2144057)supported by the Natural Science Foundation of Beijing Municipality,China
文摘Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etching and observed by scanning electron microscopy (SEM). The mechanical properties were examined by room-temperature uniaxial compression test. The results show that both plasticity and fracture mode are significantly affected by the network structure and the alteration occurs when the size of the network structure reaches up to a critical value. When the cell size (dc) of the network structure is ~3μm, Zr-based BMGs characterize in plasticity that decreases with increasingdc. The fracture mode gradually transforms from single 45° shear fracture to double 45° shear fracture and then cleavage fracture with increasingdc. In addition, the mechanisms of the transition of the plasticity and the fracture mode for these Zr-based BMGs are also discussed.
基金Project(51475483)supported by the National Natural Science Foundation of ChinaProject(2014FJ3002)supported by Science and Technology Project of Hunan Province,ChinaProject supported by Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China
文摘A thickness strain model of aluminium alloy plate under plastic deformation,based on thin plate assumption was proposed.It is found that when ratio of stress fractions is constant during in-plane loading,ratios of strain components under various loading conditions are linearly related and these points of ratios form a η-η line.Under these simple loadings,strains in thickness direction can be easily calculated by the η-η line equation without integral and differential work.When the plate is under more complicated loading conditions,the thickness can be computed by the proposed optimization and piecewise calculation model.Validation computations indicate that the relative error of the results of the presented model is less than 0.75% compared with the proven theories and FE simulation.Therefore,the developed model can be applied to engineering calculation,e.g.pre-stretching analysis of aerospace aluminium thick plate,with acceptable accuracy.
基金Projects(50975174,51275297)supported by the National Natural Science Foundation of ChinaProject(20100073110044)supported by the Education Ministry of China
文摘The electroplastic effect in AZ31B magnesium alloy sheet was investigated through uniaxial tensile tests. In order to show the athermal effect of the electrical pulses, two types of uniaxial tensile tests at the same testing temperature were carried out: uniaxial tension in environmental cabinet and uniaxial tension with electrical pulses. In addition, the distribution of temperature field in the cross-section area during uniaxial tension with electrical pulses was simulated. The results show that the distribution of temperature field along the cross-section area is homogeneous. By comparing the true stress?true strain curves of AZ31B alloy under uniaxial tensile tests, the athermal effect with electrical pulses was confirmed. The microstructure evolution after the uniaxial tension was studied by optical microscopy. The results indicate that the electrical pulses induced dynamic recrystallization plays an important role in the decrease of flow stress. Finally, a flow stress model of AZ31B sheet taking the influence of electroplastic effect into account was proposed and validated. The results demonstrate that the calculated data fit the experimental data well.