晚新生代以来全球气候变冷到底是受“气候反馈”还是“构造抬升”控制一直是地球科学研究的前沿热点之一,存在不同观点和激烈争论,大量论文发表在Nature和Science上(Molnar and England,1990;Raymo and Ruddiman,1992;Willenbring and v...晚新生代以来全球气候变冷到底是受“气候反馈”还是“构造抬升”控制一直是地球科学研究的前沿热点之一,存在不同观点和激烈争论,大量论文发表在Nature和Science上(Molnar and England,1990;Raymo and Ruddiman,1992;Willenbring and von Blanckenburg,2010;Caves Rugenstein et al,2019)。其争论的根源在于:到底是什么机制主导着硅酸盐岩风化,进而调控着大气CO_(2)浓度的变化?Misra and Froelich(2012)在Science发表了68 Ma以来海水Li同位素(δ7Li)的变化曲线,提出海水δ7Li值可以反映造山带风化,并认为新生代以来海水δ7Li值增加9‰是构造抬升导致风化增强的结果。该文的发表掀起了Li同位素示踪大陆风化的浪潮,再次刺激了“构造—风化—气候”内在联系的新一轮争议(Caves et al,2016;Penniston-Dorland et al,2017;Caves Rugenstein et al,2019;Si and Rosenthal,2019;Clift and Jonell,2021)。那么,海水的δ7Li是否能有效示踪硅酸盐岩风化呢?其主导的控制因素到底是什么?展开更多
文摘晚新生代以来全球气候变冷到底是受“气候反馈”还是“构造抬升”控制一直是地球科学研究的前沿热点之一,存在不同观点和激烈争论,大量论文发表在Nature和Science上(Molnar and England,1990;Raymo and Ruddiman,1992;Willenbring and von Blanckenburg,2010;Caves Rugenstein et al,2019)。其争论的根源在于:到底是什么机制主导着硅酸盐岩风化,进而调控着大气CO_(2)浓度的变化?Misra and Froelich(2012)在Science发表了68 Ma以来海水Li同位素(δ7Li)的变化曲线,提出海水δ7Li值可以反映造山带风化,并认为新生代以来海水δ7Li值增加9‰是构造抬升导致风化增强的结果。该文的发表掀起了Li同位素示踪大陆风化的浪潮,再次刺激了“构造—风化—气候”内在联系的新一轮争议(Caves et al,2016;Penniston-Dorland et al,2017;Caves Rugenstein et al,2019;Si and Rosenthal,2019;Clift and Jonell,2021)。那么,海水的δ7Li是否能有效示踪硅酸盐岩风化呢?其主导的控制因素到底是什么?