In order to study the relationship between the triggering current, deuterium pressure and the excess heat, a series of experiments were made in a D/Pd gas-loading system. By comparing the system constants (k = AT//kP...In order to study the relationship between the triggering current, deuterium pressure and the excess heat, a series of experiments were made in a D/Pd gas-loading system. By comparing the system constants (k = AT//kP) in both nitrogen and deuterium atmosphere we found an optimum current (8 A) and a deuterium pressure (9 x 104 Pa) in which the system could release a maximum excess power (more than 80 W). The reproducibility was 16/16 and the excess energy released in the longest experiment was about 300 MJ within 40 days, which was corresponding to 104 eV for each palladium atom. Analysis of the palladium surface with a SEM (scanning electron microscopy) and an EDS (energy dispersive spectrometer) revealed that some new surface topographical feature with concentrations of unexpected elements (such as Ag, Sn, Pb and Ca) appeared after the current triggering. The results implied that the excess heat might come from a nuclear transmutation.展开更多
Focusing on the aeroelastic stability of thin panel structure of airframe component such as engine nozzle of high-speed flight vehicles,a nonlinear aeroelastic model for a two-dimensional heated panel exposing both su...Focusing on the aeroelastic stability of thin panel structure of airframe component such as engine nozzle of high-speed flight vehicles,a nonlinear aeroelastic model for a two-dimensional heated panel exposing both surfaces to the airflow with different aerodynamic pressures is established.The von Karman large deflection plate theory and the first-order piston theory are used in the formulation of aeroelastic motion.The critical conditions for aeroelastic stability and the stability boundaries are obtained using theoretical analysis and numerical computations,respectively.The results show that the panel is more prone to become unstable when its two surfaces are subject to aerodynamic loading simultaneously;only if the sum of the aerodynamic pressures on both surfaces of the panel satisfies flutter stability condition,can the panel be likely aeroelastically stable;compared with the general panel flutter problem that only one surface is exposed to the airflows,the present condition makes the panel become aeroelastically unstable at relatively small flight aerodynamic pressure.展开更多
文摘In order to study the relationship between the triggering current, deuterium pressure and the excess heat, a series of experiments were made in a D/Pd gas-loading system. By comparing the system constants (k = AT//kP) in both nitrogen and deuterium atmosphere we found an optimum current (8 A) and a deuterium pressure (9 x 104 Pa) in which the system could release a maximum excess power (more than 80 W). The reproducibility was 16/16 and the excess energy released in the longest experiment was about 300 MJ within 40 days, which was corresponding to 104 eV for each palladium atom. Analysis of the palladium surface with a SEM (scanning electron microscopy) and an EDS (energy dispersive spectrometer) revealed that some new surface topographical feature with concentrations of unexpected elements (such as Ag, Sn, Pb and Ca) appeared after the current triggering. The results implied that the excess heat might come from a nuclear transmutation.
基金supported by the National Natural Science Foundation of China (Grant Nos.11072198,11102162)111 Project of China (GrantNo. B07050)
文摘Focusing on the aeroelastic stability of thin panel structure of airframe component such as engine nozzle of high-speed flight vehicles,a nonlinear aeroelastic model for a two-dimensional heated panel exposing both surfaces to the airflow with different aerodynamic pressures is established.The von Karman large deflection plate theory and the first-order piston theory are used in the formulation of aeroelastic motion.The critical conditions for aeroelastic stability and the stability boundaries are obtained using theoretical analysis and numerical computations,respectively.The results show that the panel is more prone to become unstable when its two surfaces are subject to aerodynamic loading simultaneously;only if the sum of the aerodynamic pressures on both surfaces of the panel satisfies flutter stability condition,can the panel be likely aeroelastically stable;compared with the general panel flutter problem that only one surface is exposed to the airflows,the present condition makes the panel become aeroelastically unstable at relatively small flight aerodynamic pressure.