提出一种以CaCl_(2)为氯化剂,采用氯化焙烧法从铜熔炼渣中高效回收锌的工艺。利用热力学计算、热重–差热(TG-DSC)分析和X射线衍射(XRD)等手段,研究氯化反应机理和氯化焙烧过程动力学。结果表明,CaCl_(2)氧化分解和所有含锌相的氯化反...提出一种以CaCl_(2)为氯化剂,采用氯化焙烧法从铜熔炼渣中高效回收锌的工艺。利用热力学计算、热重–差热(TG-DSC)分析和X射线衍射(XRD)等手段,研究氯化反应机理和氯化焙烧过程动力学。结果表明,CaCl_(2)氧化分解和所有含锌相的氯化反应温度均分别高于774.3和825℃。铜熔炼渣的氯化焙烧过程可分为4个阶段,依次为吸附水脱除、结晶水脱除、含铁相氧化和锌的氯化挥发。铁氧化阶段和锌氯化挥发阶段的表观活化能分别为101.70和84.4 k J/mol,铁氧化过程的最概然机理函数为Avrami–Erofeev方程(n=2),锌氯化过程符合未反应核收缩模型且受化学反应控制。展开更多
基金the financial supports from the National Natural Science Foundation of China(No.51902239)the Natural Science Foundation of Shaanxi Province,China(No.2020JQ-808)the National Innovation and Entrepreneurship Training Program for College Students,China(No.202110702040)。
文摘提出一种以CaCl_(2)为氯化剂,采用氯化焙烧法从铜熔炼渣中高效回收锌的工艺。利用热力学计算、热重–差热(TG-DSC)分析和X射线衍射(XRD)等手段,研究氯化反应机理和氯化焙烧过程动力学。结果表明,CaCl_(2)氧化分解和所有含锌相的氯化反应温度均分别高于774.3和825℃。铜熔炼渣的氯化焙烧过程可分为4个阶段,依次为吸附水脱除、结晶水脱除、含铁相氧化和锌的氯化挥发。铁氧化阶段和锌氯化挥发阶段的表观活化能分别为101.70和84.4 k J/mol,铁氧化过程的最概然机理函数为Avrami–Erofeev方程(n=2),锌氯化过程符合未反应核收缩模型且受化学反应控制。