大规模具有间歇性、波动性且难以预测的风电接入电网后会给电网的电压和频率稳定性带来一系列挑战,因此如何评估已有区域电网的最大风电极限渗透功率成为了一个重要问题。现有研究大多分析了不同风电渗透率对电网电压和频率稳定性的影响...大规模具有间歇性、波动性且难以预测的风电接入电网后会给电网的电压和频率稳定性带来一系列挑战,因此如何评估已有区域电网的最大风电极限渗透功率成为了一个重要问题。现有研究大多分析了不同风电渗透率对电网电压和频率稳定性的影响,而缺乏对海上风电渗透率极限的评估。为此,考虑风速波动性的影响,提出了一种针对已有区域电网的海上风电渗透率极限评估方法。首先,通过研究海上风电场静态模型分析海上风电场功率输出特性;然后,通过构建含海上风电场和同步发电机的电网等效模型分析不同风电渗透率下并网点(Point of Common Coupling, PCC)电压与频率特性;最后,针对风速波动引起的电网电压和频率波动,提出考虑风速波动性的海上风电渗透率极限评估方法,并通过算例验证所提方法的有效性。随着海上风电渗透率增加,PCC电压降低速度和幅度也增大,加剧了有功波动对PCC电压的不利影响。此外,高渗透率条件下,电力系统可能面临有功功率缺额问题,造成频率偏差加剧。电压闪变和电压偏差在高渗透率时也随之增加,导致电能质量下降,频率合格率降低。展开更多
针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并...针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并网指令。其次,设计了改进侏儒猫鼬优化算法(improved dwarf mongoose optimizer,IDMO),并利用它对传统K-means聚类算法进行改进,加快了聚类速度。接着,制定了电池单元动态分组原则,并根据电池单元SOC利用改进K-means将其分为3个电池组。然后,设计了基于充放电函数的电池单元SOC一致性功率分配方法,并据此提出BESS双层功率分配策略,上层确定电池组充放电顺序及指令,下层计算电池单元充放电指令。对所提策略进行仿真验证,结果表明,所设计的IDMO具有更高的寻优精度及更快的寻优速度。所提BESS平抑光伏波动策略在有效平抑波动的同时,降低了BESS运行寿命损耗并提高了电池单元SOC的均衡性。展开更多
文摘大规模具有间歇性、波动性且难以预测的风电接入电网后会给电网的电压和频率稳定性带来一系列挑战,因此如何评估已有区域电网的最大风电极限渗透功率成为了一个重要问题。现有研究大多分析了不同风电渗透率对电网电压和频率稳定性的影响,而缺乏对海上风电渗透率极限的评估。为此,考虑风速波动性的影响,提出了一种针对已有区域电网的海上风电渗透率极限评估方法。首先,通过研究海上风电场静态模型分析海上风电场功率输出特性;然后,通过构建含海上风电场和同步发电机的电网等效模型分析不同风电渗透率下并网点(Point of Common Coupling, PCC)电压与频率特性;最后,针对风速波动引起的电网电压和频率波动,提出考虑风速波动性的海上风电渗透率极限评估方法,并通过算例验证所提方法的有效性。随着海上风电渗透率增加,PCC电压降低速度和幅度也增大,加剧了有功波动对PCC电压的不利影响。此外,高渗透率条件下,电力系统可能面临有功功率缺额问题,造成频率偏差加剧。电压闪变和电压偏差在高渗透率时也随之增加,导致电能质量下降,频率合格率降低。
文摘针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并网指令。其次,设计了改进侏儒猫鼬优化算法(improved dwarf mongoose optimizer,IDMO),并利用它对传统K-means聚类算法进行改进,加快了聚类速度。接着,制定了电池单元动态分组原则,并根据电池单元SOC利用改进K-means将其分为3个电池组。然后,设计了基于充放电函数的电池单元SOC一致性功率分配方法,并据此提出BESS双层功率分配策略,上层确定电池组充放电顺序及指令,下层计算电池单元充放电指令。对所提策略进行仿真验证,结果表明,所设计的IDMO具有更高的寻优精度及更快的寻优速度。所提BESS平抑光伏波动策略在有效平抑波动的同时,降低了BESS运行寿命损耗并提高了电池单元SOC的均衡性。