【目的】现有的混合储能系统控制策略难以在保持荷电状态(state of charge,SOC)处于合理范围的同时,满足未来时刻风电波动造成的混合储能系统超前充放电需求,因此提出一种考虑平抑未来时刻风电功率波动的混合储能系统超前模糊控制策略...【目的】现有的混合储能系统控制策略难以在保持荷电状态(state of charge,SOC)处于合理范围的同时,满足未来时刻风电波动造成的混合储能系统超前充放电需求,因此提出一种考虑平抑未来时刻风电功率波动的混合储能系统超前模糊控制策略。【方法】首先,通过采用集合经验模态分解(ensemble empirical mode decomposition,EEMD)方法分解得到不同类型储能设备需要平抑的风电功率;其次,根据混合储能系统SOC和功率饱和程度整定功率修正参数,对混合储能系统输出功率进行修正;再次,由风电预测算法得到前瞻周期内风电功率预测值,根据前瞻周期内风电功率波动情况和超前控制理论整定提前充放电参数,校正储能系统输出功率;最后,以某风电场的实际数据为例,通过仿真验证了所提超前模糊控制策略的有效性。【结果】提出的控制策略不仅能够降低风电并网波动越限概率,显著减少总输出功率与目标功率偏差值,而且能够使混合储能系统的SOC控制在合理范围内。【结论】该策略可以为平抑风电波动的相关研究提供有益参考。展开更多
为满足储能系统提供惯量和一次调频支撑功能需要对多类型储能介质集中配置和优化调控的需求,针对基于模块化多电平换流器(modularmultilevelconverter,MMC)的新型混合储能系统(hybrid energy storage system,HESS)MMC-HESS,提出了混合...为满足储能系统提供惯量和一次调频支撑功能需要对多类型储能介质集中配置和优化调控的需求,针对基于模块化多电平换流器(modularmultilevelconverter,MMC)的新型混合储能系统(hybrid energy storage system,HESS)MMC-HESS,提出了混合同步控制(hybrid synchronous control,HSC)整体策略。MMCHESS采用模块化设计,将超级电容和蓄电池分别安置在高压直流母线侧和子模块内,具备高功率密度和高能量密度的优势。阐述了混合储能系统的拓扑结构和工作原理并采用混合同步控制策略提供系统惯量和一次调频功能及故障限流时的同步能力和孤岛并网切换功能,采用滤波器实现储能功率分配,采用荷电状态(state of charge,SOC)均衡控制实现蓄电池能量均衡。最后,基于硬件在环实验平台,验证了所提拓扑结构与控制策略的可行性和有效性。实验结果表明:所提混合储能系统及其控制策略具备惯量与频率支撑能力,在故障限流、正常并网、孤岛运行之间可灵活切换,能够有效发挥混合储能的综合优势,在中压配电网中具有良好的应用前景。展开更多
针对综合能源系统(Integrated energy system, IES)中可再生能源(Renewable energy, RE)能量耦合的复杂性和能量波动问题,提出了一种改进的混合储能系统(Hybrid energy storage system, HESS)三阶段能量优化调度。分析了IES中各种器件...针对综合能源系统(Integrated energy system, IES)中可再生能源(Renewable energy, RE)能量耦合的复杂性和能量波动问题,提出了一种改进的混合储能系统(Hybrid energy storage system, HESS)三阶段能量优化调度。分析了IES中各种器件在不同时间尺度下的功率响应特性,表明三阶段能量优化调度方法可以与包括HESS在内的IES很好地耦合。比较分析了HESS在稳定功率波动和延长储能寿命方面优于单一储能系统的优点,提出了三阶段能量优化调度下超级电容的控制方法。根据日前预测数据,一次能源消耗、运营成本、二氧化碳排放被视为日前滚动优化阶段的优化目标。在日内滚动调整阶段,该方法可以减少RE日前预测误差的影响,实现日内能源调度平衡,确保IES设备的安全运行。考虑到IES中可再生能源比例较高的背景,创新性地利用HESS的优势来改善系统的功率响应特性。仿真结果表明,所提方法在提升系统功率响应速度、延长储能电池(Lithium-ion battery,LiB)寿命和减少碳排量上具有显著提升。展开更多
文摘为满足储能系统提供惯量和一次调频支撑功能需要对多类型储能介质集中配置和优化调控的需求,针对基于模块化多电平换流器(modularmultilevelconverter,MMC)的新型混合储能系统(hybrid energy storage system,HESS)MMC-HESS,提出了混合同步控制(hybrid synchronous control,HSC)整体策略。MMCHESS采用模块化设计,将超级电容和蓄电池分别安置在高压直流母线侧和子模块内,具备高功率密度和高能量密度的优势。阐述了混合储能系统的拓扑结构和工作原理并采用混合同步控制策略提供系统惯量和一次调频功能及故障限流时的同步能力和孤岛并网切换功能,采用滤波器实现储能功率分配,采用荷电状态(state of charge,SOC)均衡控制实现蓄电池能量均衡。最后,基于硬件在环实验平台,验证了所提拓扑结构与控制策略的可行性和有效性。实验结果表明:所提混合储能系统及其控制策略具备惯量与频率支撑能力,在故障限流、正常并网、孤岛运行之间可灵活切换,能够有效发挥混合储能的综合优势,在中压配电网中具有良好的应用前景。